In statechart diagrams, as shown in Figure 4.47, we work with the following elements:

Initial State

The initial state represents the source of all objects:

- It is not a normal state, because objects in this state do not yet exist.

State

The state of an object is always determined by its attributes and associations. States in statechart diagrams represent a set of those value combinations, in which an object behaves the same in response to events:
Therefore, not every modification of an attribute leads to a new state.

Transition

A transition represents the change from one state to another:

![State Transition Diagram]

Internal Transition

An internal transition is a transition from one state to itself. This means that the object handles the event without changing its state:

![Internal Transition Diagram]

The events that initiate the internal transition are listed in the lower part of the state symbol. For instance, a frequent flyer card object in the state normal remains in the state normal when the event «M» add miles occurs.

Mutation Event

A mutation event is the initiator of a transition from one state to another, or for an internal transition, where the state remains the same:

![Mutation Event Diagram]
Action

An action is the activity of an object that is initiated by an event:

«M» Event/Action

An action describes what the object does in response to the event. This description can be textual or formalized.

Guard Condition

A guard condition is a condition that has to be met in order to enable the transition to which it belongs:

[Guard Condition]

Guard conditions can be used to document that a certain event, depending on the condition, can lead to different transitions.

Final State

The final state represents the end of an object's existence:

Final State

A final state is not a real state, because objects in this state do not exist anymore.

Source: http://sourcemaking.com/uml/modeling-it-systems/the-behavioral-view/statechart-diagram