
SPECIFIC VS. GENERIC 
 

What we've just done is get an understanding the core of OTP (conceptually speaking). 
This is what OTP really is all about: taking all the generic components, extracting them in 
libraries, making sure they work well and then reusing that code when possible. Then all 
that's left to do is focus on the specific stuff, things that will always change from application 
to application. 

Obviously, there isn't much to save by doing things that way with only the kitty server. It 
looks a bit like abstraction for abstraction's sake. If the app we had to ship to a customer 
were nothing but the kitty server, then the first version might be fine. If you're going to have 
larger applications then it might be worth it to separate generic parts of your code from the 
specific sections. 

Let's imagine for a moment that we have some Erlang software running on a server. Our 
software has a few kitty servers running, a veterinary process (you send your broken kitties 
and it returns them fixed), a kitty beauty salon, a server for pet food, supplies, etc. Most of 
these can be implemented with a client-server pattern. As time goes, your complex system 
becomes full of different servers running around. 

Adding servers adds complexity in terms of code, but also in terms of testing, maintenance 
and understanding. Each implementation might be different, programmed in different styles 
by different people, and so on. However, if all these servers share the same 
common my_server abstraction, you substantially reduce that complexity. You 
understand the basic concept of the module instantly ("oh, it's a server!"), there's a single 
generic implementation of it to test, document, etc. The rest of the effort can be put on each 
specific implementation of it. 
 
This means you reduce a lot of time tracking and solving bugs (just do it at one place for all 
servers). It also means that you reduce the number of bugs you introduce. If you were to re-
write the my_server:call/3 or the process' main loop all the time, not only would it be 
more time consuming, but chances of forgetting one step or the other would skyrocket, and 
so would bugs. Fewer bugs mean fewer calls during the night to go fix something, which is 
definitely good for all of us. Your mileage may vary, but I'll bet you don't appreciate going to 
the office on days off to fix bugs either. 
Another interesting thing about what we did when separating the generic from the specific is 
that we instantly made it much easier to test our individual modules. If you wanted to unit 
test the old kitty server implementation, you'd need to spawn one process per test, give it 



the right state, send your messages and hope for the reply you expected. On the other 
hand, our second kitty server only requires us to run the function calls over the 
'handle_call/3' and 'handle_cast/2' functions and see what they output as a new state. No 
need to set up servers, manipulate the state. Just pass it in as a function parameter. Note 
that this also means the generic aspect of the server is much easier to test given you can 
just implement very simple functions that do nothing else than let you focus on the 
behaviour you want to observe, without the rest. 

A much more 'hidden' advantage of using common abstractions in that way is that if 
everyone uses the exact same backend for their processes, when someone optimizes that 
single backend to make it a little bit faster, every process using it out there will run a little bit 
faster too. For this principle to work in practice, it's usually necessary to have a whole lot of 
people using the same abstractions and putting effort on them. Luckily for the Erlang 
community, that's what happens with the OTP framework. 

Back to our modules. There are a bunch of things we haven't yet addressed: named 
processes, configuring the timeouts, adding debug information, what to do with unexpected 
messages, how to tie in hot code loading, handling specific errors, abstracting away the 
need to write most replies, handling most ways to shut a server down, making sure the 
server plays nice with supervisors, etc. Going over all of this is superfluous for this text, but 
would be necessary in real products that need to be shipped. Again, you might see why 
doing all of this by yourself is a bit of a risky task. Luckily for you (and the people who'll 
support your applications), the Erlang/OTP team managed to handle all of that for you with 
the gen_server behaviour. gen_server is a bit like my_server on steroids, except it has 
years and years of testing and production use behind it. 
 

Parithy
Typewritten Text
Source : http://learnyousomeerlang.com/what-is-otp


	SPECIFIC VS. GENERIC



