
Sorting 

So far we have been working with very elementary problems — problems 
where the single-processor solution is so straightforward that in classical 
algorithms we rarely discuss the problems at all. Now we'll turn to one of the 
most heavily studied classical problems of all: sorting. How can we sort an 
array of numbers quickly when we have many processors? 

We know we can sort an n-element array on a single processor in O(n log n) 
time. With p processors, then, we would hope to find an algorithm that 
takes O((n log n) / p) time. We won't quite achieve that here, but instead we'll 

look at an algorithm that takes O((n ((log p)² + log n) / p)) time. Our algorithm will 
be based on the mergesort algorithm. It's natural to look at mergesort, because 
it's a simple divide-and-conquer algorithm. Divide-and-conquer algorithms 
are particularly attractive for multiprocessor systems: After splitting the 
problem into subproblems, we split our processors to process each 
subproblem simultaneously, and then we need a way to use all our processors 
combine the subproblems' solutions together. 

(Incidentally, there is a O((n log n) / p) algorithm for parallel sorting, developed 
in 1983 by Ajtai, Komlós, and Szemerédi and subsequently simplified by 
M. S. Paterson in 1990. Even the simplified version, though, is more complex 
than what we want to study here. What's more, the multiplicative constant 
hidden by the big-O notation turns out to be quite large — large enough to 
make it less efficient in the real world than the algorithm we'll study, which 
was developed by Ken Batcher in 1968.) 

4.1. Merging 

Our first problem is determining how to merge two arrays of similar length. 
For the moment, we'll imagine that we have as many processors as we have 
array elements. Below is a diagram of how to merge two segments, each with 8 
elements. 



 

The first round here consists of comparing the elements of each sorted half 
with the element at the same index in the other sorted half; and for each pair, 
we will swap the numbers if the second number is less than the first. Thus, the 
21 and 20 are compared, and since 20 is less, it is moved into the processor 0, 
while the 21 moves up to processor 8. At the same time, processors 1 and 9 
compare 24 and 22, and since they are out of order, these numbers are 
swapped. Note, though, that the 28 and 31 are compared but not moved, since 
the lesser is already at the smaller-index processor. 

The second round of the above diagram involves several comparisons between 
processors that are 4 apart. And the third round involves comparisons 
between processors that are 2 apart, and finally there are comparisons 
between adjacent processors. 

We've illustrated the process with a single number for each processor. In fact, 
each processor will actually have a whole segment of data. Where our above 
diagram indicates that two processors should compare numbers, what will 
actually happen is that the two processors will communicate their respective 
segments to each other and each will merge the two segments together. The 
lower-index processor keeps the lower half of the merged result, while the 
upper-index processor keeps the upper half. 

Below is some pseudocode showing how this might be implemented. In order 
to facilitate its usage in mergesort later, this pseudocode is written imagining 
that only a subset of the processors contain the two arrays to be merged. 

void merge(int firstPid, int numProcs) { 

    // Note: numProcs must be a power of 2, and firstPid must be a multiple o

f 

    // numProcs. The numProcs / 2 processors starting from firstPid should ho

ld one 

    // sorted array, while the next numProcs / 2 processors hold the other. 

     

    int d = numProcs / 2; 

    if(pid < firstPid + d) mergeFirst(pid + d); 



    else                   mergeSecond(pid - d); 

    while(d >= 2) { 

        d /= 2; 

        if((pid & d) != 0) { 

            if(pid + d < firstPid + numProcs) mergeFirst(pid + d); 

        } else { 

            if(pid - d >= firstPid)           mergeSecond(pid - d); 

        } 

    } 

} 

 

void mergeFirst(int otherPid) { 

    send(otherPid, segment);           // send my segment to partner 

    otherSegment = receive(otherPid);  // receive partner's whole segment 

    merge segment and otherSegment, keeping the first half in my segment vari

able; 

} 

 

void mergeSecond(int otherPid) { 

    otherSegment = receive(otherPid);  // receive partner's whole segment 

    send(otherPid, segment);           // send my segment to partner 

    merge segment and otherSegment, keeping the second half in my segment var

iable; 

} 

Though the algorithm may make sense enough, it isn't at all obvious that it 
actually is guaranteed always to merge the two halves into one sorted array. 
The argument that it works is fairly involved, and we won't go into it here. 

We will, though, examine how much time the algorithm takes. Since with each 
round the involved processors will send, receive, and merge segments of 
length ⌈n / p⌉, each round of our algorithm will take O(n / p) time. Because 
there are log2 p rounds, the total time taken to merge both arrays 

isO((n / p) log p). 

4.2. Mergesort 

Now we know how to merge two (n / 2)-length arrays on p processors 

in O((n / p) log p) time. How can we use this merging algorithm to sort an 
array with n elements? 

Before we can perform any sorting, we must first sort each individual 
processor's segment. You've studied single-processor sorting thoroughly 
before; we might as well use the quicksort algorithm here. Each processor has 
⌈n / p⌉ elements in its segment, so each processor will 

take O((n / p) log (n / p))= O((n / p) log n) time. All processors perform this 
quicksort simultaneously. 



Now we will progressively merge sorted segments together, until the entire 
array is one large sorted segment, as diagrammed below. 

 

This is accomplished using the following pseudocode, which uses the merge 
subroutine we developed in Section 4.1. 

void mergeSort() { 

    perform quicksort on my segment; 

    int sortedProcs = 1; 

    while(sortedProcs < procs) { 

        sortedProcs *= 2; 

        merge(pid & ~(sortedProcs - 1), sortedProcs); 

    } 

} 

Let's continue our speed analysis by skipping to thinking about the final level 
of our diagram. For this last level, we have two halves of the array to merge, 
with n elements between them. We've already seen that merging these halves 

takes O((n / p) log p) time. Removing the big-O notation, this means that 

there is some constant c for which the time taken is at most c ((n / p) log p). 

Now we'll consider the next-to-last level of our diagram. Here, we have two 
merges happening simultaneously, each taking two sorted arrays with a total 
of n / 2 elements. Half of our processors are working on each merge, so each 
merge takes at 

most c (((n / 2) / (p / 2)) log (p / 2))= c ((n / p) log (p / 2)) ≤ c ((n / p) log p) time 
— the same bound we arrived at for the final level. That is the time taken for 
each of the two merges at this next-to-last level; but since each merge is 
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occurring simultaneously on a different set of processors, it is also the total 
time taken for both merges. 

Similarly, at the third-from-last level, we have four simultaneous merges, each 
performed by p / 4processors merging two sorted arrays with a total 
of n / 4 elements. The time taken for each such merge 

is c (((n / 4) / (p / 4)) log (p / 4)) = c ((n / p) log (p / 4)) ≤ c ((n / p) log p). Again, 
because the merges occur simultaneously on different sets of processors, this 
is also the total time taken for this level of our diagram. 

What we've seen is that for each of the last three levels of the diagram, the 

time taken is at mostc((n / p) log p). Identical arguments will work for all 
other levels of the diagram except the first. There are log2 p such levels, each 
being performed after the previous one is complete. Thus the total time taken 
for all levels but the first is at 

most (c ((n / p) log p)) log2 p = O((n / p) (log p)²). 

We've already seen that the first level — where each processor independently 

sorts its own segment — takes O((n / p) log n) time. Adding this in, we arrive 

at our total bound for mergesort ofO((n / p) ((log p)² + log n)). 
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