
Sorting

So far we have been working with very elementary problems — problems
where the single-processor solution is so straightforward that in classical
algorithms we rarely discuss the problems at all. Now we'll turn to one of the
most heavily studied classical problems of all: sorting. How can we sort an
array of numbers quickly when we have many processors?

We know we can sort an n-element array on a single processor in O(n log n)
time. With p processors, then, we would hope to find an algorithm that
takes O((n log n) / p) time. We won't quite achieve that here, but instead we'll

look at an algorithm that takes O((n ((log p)² + log n) / p)) time. Our algorithm will
be based on the mergesort algorithm. It's natural to look at mergesort, because
it's a simple divide-and-conquer algorithm. Divide-and-conquer algorithms
are particularly attractive for multiprocessor systems: After splitting the
problem into subproblems, we split our processors to process each
subproblem simultaneously, and then we need a way to use all our processors
combine the subproblems' solutions together.

(Incidentally, there is a O((n log n) / p) algorithm for parallel sorting, developed
in 1983 by Ajtai, Komlós, and Szemerédi and subsequently simplified by
M. S. Paterson in 1990. Even the simplified version, though, is more complex
than what we want to study here. What's more, the multiplicative constant
hidden by the big-O notation turns out to be quite large — large enough to
make it less efficient in the real world than the algorithm we'll study, which
was developed by Ken Batcher in 1968.)

4.1. Merging

Our first problem is determining how to merge two arrays of similar length.
For the moment, we'll imagine that we have as many processors as we have
array elements. Below is a diagram of how to merge two segments, each with 8
elements.

The first round here consists of comparing the elements of each sorted half
with the element at the same index in the other sorted half; and for each pair,
we will swap the numbers if the second number is less than the first. Thus, the
21 and 20 are compared, and since 20 is less, it is moved into the processor 0,
while the 21 moves up to processor 8. At the same time, processors 1 and 9
compare 24 and 22, and since they are out of order, these numbers are
swapped. Note, though, that the 28 and 31 are compared but not moved, since
the lesser is already at the smaller-index processor.

The second round of the above diagram involves several comparisons between
processors that are 4 apart. And the third round involves comparisons
between processors that are 2 apart, and finally there are comparisons
between adjacent processors.

We've illustrated the process with a single number for each processor. In fact,
each processor will actually have a whole segment of data. Where our above
diagram indicates that two processors should compare numbers, what will
actually happen is that the two processors will communicate their respective
segments to each other and each will merge the two segments together. The
lower-index processor keeps the lower half of the merged result, while the
upper-index processor keeps the upper half.

Below is some pseudocode showing how this might be implemented. In order
to facilitate its usage in mergesort later, this pseudocode is written imagining
that only a subset of the processors contain the two arrays to be merged.

void merge(int firstPid, int numProcs) {

 // Note: numProcs must be a power of 2, and firstPid must be a multiple o

f

 // numProcs. The numProcs / 2 processors starting from firstPid should ho

ld one

 // sorted array, while the next numProcs / 2 processors hold the other.

 int d = numProcs / 2;

 if(pid < firstPid + d) mergeFirst(pid + d);

 else mergeSecond(pid - d);

 while(d >= 2) {

 d /= 2;

 if((pid & d) != 0) {

 if(pid + d < firstPid + numProcs) mergeFirst(pid + d);

 } else {

 if(pid - d >= firstPid) mergeSecond(pid - d);

 }

 }

}

void mergeFirst(int otherPid) {

 send(otherPid, segment); // send my segment to partner

 otherSegment = receive(otherPid); // receive partner's whole segment

 merge segment and otherSegment, keeping the first half in my segment vari

able;

}

void mergeSecond(int otherPid) {

 otherSegment = receive(otherPid); // receive partner's whole segment

 send(otherPid, segment); // send my segment to partner

 merge segment and otherSegment, keeping the second half in my segment var

iable;

}

Though the algorithm may make sense enough, it isn't at all obvious that it
actually is guaranteed always to merge the two halves into one sorted array.
The argument that it works is fairly involved, and we won't go into it here.

We will, though, examine how much time the algorithm takes. Since with each
round the involved processors will send, receive, and merge segments of
length ⌈n / p⌉, each round of our algorithm will take O(n / p) time. Because
there are log2 p rounds, the total time taken to merge both arrays

isO((n / p) log p).

4.2. Mergesort

Now we know how to merge two (n / 2)-length arrays on p processors

in O((n / p) log p) time. How can we use this merging algorithm to sort an
array with n elements?

Before we can perform any sorting, we must first sort each individual
processor's segment. You've studied single-processor sorting thoroughly
before; we might as well use the quicksort algorithm here. Each processor has
⌈n / p⌉ elements in its segment, so each processor will

take O((n / p) log (n / p))= O((n / p) log n) time. All processors perform this
quicksort simultaneously.

Now we will progressively merge sorted segments together, until the entire
array is one large sorted segment, as diagrammed below.

This is accomplished using the following pseudocode, which uses the merge
subroutine we developed in Section 4.1.

void mergeSort() {

 perform quicksort on my segment;

 int sortedProcs = 1;

 while(sortedProcs < procs) {

 sortedProcs *= 2;

 merge(pid & ~(sortedProcs - 1), sortedProcs);

 }

}

Let's continue our speed analysis by skipping to thinking about the final level
of our diagram. For this last level, we have two halves of the array to merge,
with n elements between them. We've already seen that merging these halves

takes O((n / p) log p) time. Removing the big-O notation, this means that

there is some constant c for which the time taken is at most c ((n / p) log p).

Now we'll consider the next-to-last level of our diagram. Here, we have two
merges happening simultaneously, each taking two sorted arrays with a total
of n / 2 elements. Half of our processors are working on each merge, so each
merge takes at

most c (((n / 2) / (p / 2)) log (p / 2))= c ((n / p) log (p / 2)) ≤ c ((n / p) log p) time
— the same bound we arrived at for the final level. That is the time taken for
each of the two merges at this next-to-last level; but since each merge is

http://www.toves.org/books/distalg/index.html#4.1

occurring simultaneously on a different set of processors, it is also the total
time taken for both merges.

Similarly, at the third-from-last level, we have four simultaneous merges, each
performed by p / 4processors merging two sorted arrays with a total
of n / 4 elements. The time taken for each such merge

is c (((n / 4) / (p / 4)) log (p / 4)) = c ((n / p) log (p / 4)) ≤ c ((n / p) log p). Again,
because the merges occur simultaneously on different sets of processors, this
is also the total time taken for this level of our diagram.

What we've seen is that for each of the last three levels of the diagram, the

time taken is at mostc((n / p) log p). Identical arguments will work for all
other levels of the diagram except the first. There are log2 p such levels, each
being performed after the previous one is complete. Thus the total time taken
for all levels but the first is at

most (c ((n / p) log p)) log2 p = O((n / p) (log p)²).

We've already seen that the first level — where each processor independently

sorts its own segment — takes O((n / p) log n) time. Adding this in, we arrive

at our total bound for mergesort ofO((n / p) ((log p)² + log n)).

Source: http://www.toves.org/books/distalg/index.html#5

