
SECURING DATABASE SERVERS 

 
With the ever-expanding data requirements for Web applications, database 
administrators often configure security parameters at the OS and database 
layer. Unfortunately, administrators seldom consider implementing security 
at a network layer to protect the data from prying eyes. Recent cases of 
hacking into the IT infrastructure of finance firms show us that an increasing 
level of security awareness is required in this space, and this article aims to 
address this issue. It is targeted at systems and database administrators, as 
well as senior IT management staff, featuring case studies from a few popular 
open source databases. 

For starters, there are seven layers that form the OSI networking model. 
Beginning at the physical layer, it goes up to the data-link, network, transport, 
session, presentation, and the application layers. While the physical-layer 
security is taken care of by surveillance systems, the application-layer 
security is handled by code instrumentation, which is the job of the 
developers. In the wake of overall security awareness in the IT world, 
responsible product managers incorporate code security as a mandated 
practice in their code-deployment release cycles. 

All the intermediate five layers of the OSI model do require security 
measures too, by some means or the other, irrespective of the software 



component to which they are catering. Let’s take a look at these layers, which 
are usually not taken too seriously by security administrators. It is important 
to note that these layers actually need to be more secure than the layers at the 
top and bottom, because there are such a variety of attacks on the interim 
layers that there is no single means, tool or process to control them. 

The initial levels of compromising vulnerabilities usually start at the data-link 
and network layers (alternatively called Layer-2 and Layer-3 attacks). Layer-
2 security is susceptible to MAC address spoofing, Layer-2 to flooding 
attacks, whereas Layer-3 security is subject to IP address-spoofing attacks. 
Similarly, Layers 4, 5 and 6 are prone to packet-crafting, session-stealing and 
cryptography-based attacks, respectively. 

To understand this better, please refer to Figure 1, which shows various 
security methodologies and how each of these maps into the OSI layers of 
networking. 

 
Figure 1: Security methodologies for various layers 

While there is no such thing as 100 per cent security, the security design can 
incorporate carefully thought-out, customised security mechanisms, which 

http://www.opensourceforu.com/wp-content/uploads/2011/05/OSI-Security-Methodology-Map.jpg


can lead to a total security solution in an IT infrastructure. There is a wide 
range of devices from the security view-point, such as firewalls, intrusion-
detection devices, content firewalls, etc., covering each layer, and also 
overlapping multiple network layers. 

Why is typical security not enough for database 
servers? 
Securing database servers needs administrators to go the extra mile in terms 
of technical design efforts. It is a job to be carried out by sysadmins as well 
as database admins, to cover all the network layers. Often, the practice is to 
assume that using OS-level user administration and leveraging the product’s 
built-in security is enough to protect databases. 

Unfortunately, this is not true. While the user- and role-based models with 
strong passwords for SA accounts, etc., are essential, they exist only at the 
application layer; relying on them alone defeats the purpose of securing 
databases. 

The technical reason behind why legacy methods fail is because a database is 
a widely and continuously accessible component, which makes it more 
vulnerable and susceptible to attacks. Database security requirements touch 
all networking layers, and hence, need careful design. 

As an example, consider a database server that accepts connections from 
within the corporate network as well as from outside. It is accessed 
programmatically by the frontend software, as well as directly by admin and 
development staff to run queries, etc. It is accessed by backup services, anti-
virus servers, and other maintenance-based utilities, and thus is widely 
accessible. 

Any of these human or automated means of accessing the database server 
make it vulnerable to possible attacks originating at various networking 
touch-points. The latest spyware, and vulnerabilities that revolve around the 
infamous SQL-injection method, prove that something needs to be done 
beyond these legacy methods. 



This is exactly where the security mechanisms and solutions that span the 
lower layers in the networking model come into the picture. Let us look at a 
few moderately advanced methods to secure database servers, followed by 
some serious solutions. 

Securing database servers 
NAT and PAT 
Using network address translation and port address translation is the first 
recommended step. Since database products use predefined default ports, it is 
the first thing hackers look for, and hence should be changed. Even though 
the database IP address and port is not exposed to the outside world, it is a 
best practice to change it, to keep spyware and viruses away. Any standard 
firewall nowadays provides NAT and PAT features. 

A demilitarised zone (DMZ) 
Please refer to Figure 2, which shows a typical database server farm in a 
corporate IT infrastructure, hosting mission-critical databases and data-
warehousing services. 



 
Figure 2: Database server farm 

As we can see, the database server is not exposed to the Internet, but is 
separated from it by an additional firewall. This design method is well-
known, and is called a demilitarised zone (DMZ). In earlier days, it was a 
practice to keep database servers in the same network as the frontend/Web 
application servers, making them prone to attacks. An additional layer of 
security is now achieved by the second firewall, which opens up only the 
database port for the frontend servers, and not the IP addresses of the entire 
Internet. If the database carries mission-critical datasets of sensitive 
information, this method can be clubbed together with the NAT-PAT method, 
making it even harder for malware to breach the database server. 



Content-based firewalls 
The latest firewall products are equipped with the capability to look into the 
data packets flowing in either direction, and provide systems administrators a 
means to configure actions based on the intercepted content. These firewalls, 
sometimes called Layer-7 firewalls, are capable of reading SQL queries, 
query data, validation data, XML data, etc. Deploying such a firewall can 
certainly reduce virus attacks drastically, because data packets pertaining to 
ill-behaved operations are dropped and reported. 

SSL connections 
While SSL technology is commonly used to secure Web-server connections 
to browsers, it can also be used between frontend servers and the backend 
database server. SSL uses public-key and private-key cryptography to encrypt 
all connections between caller and listener. While this solution is a bit costly 
and takes a toll on data-transfer speeds, it is worth the effort to alleviate man-
in-the-middle attacks. 

IPSec security 
The real challenge while securing a database server is to figure out who 
should access it. In terms of people, it is as simple as deploying user-ID and 
password-based access. However, if the network is compromised by a hacker, 
this won’t help much. A further step, in such a case, would be to deploy 
IPSec security, whereby each server will connect to the database server using 
an IPSec token, making it a unique and non-crackable connection. 

Securing open source databases 
A database administrator always carries out the essential chores to secure a 
database; however, for Linux-based open source solutions, a little extra effort 
is required. While there is no single solution to cover all open source database 
distributions, there are a few good tools for each. 



A popular open source database is MySQL, which is used by many 
commercial websites as their backend. MySQL comes with the necessary 
scripts to harden the server from the security perspective, such as scripts to 
remove test databases, lower system and database privileges, enable the built-
in Linux firewall to configure default database ports and block others, etc. 

MongoDB and CouchDB are two famous database servers running on 
Apache distributions. Both come equipped with the great feature of IP 
binding, whereby the database kernel services are bound to one single IP. 
Adding an open source content firewall or a NAT-PAT solution can help 
create a very cost-effective and, yet, secure database farm. 

The Hypertable open source database, which is modelled after Google’s 
BigTable DB structure, provides an extensive library of API calls that are 
used exclusively for adding security features. It is easy to write scripts using 
those API calls, to securely deploy and configure Hypertable distributions in 
a big server farm. 

Unlike Microsoft SQL Server, Oracle and Sybase products, while designing 
security for open source products, it is important to incorporate a combination 
of network security methods, as well as the database product’s application-
layer security. 

Summary 
While much effort goes into securing a database, due diligence is required to 
secure the server hosting the database too. The security measures taken for 
the application layer as well as the network layer must go hand-in-hand to 
keep mission-critical data safe from hackers. A rock-solid change-control 
process needs to be in place to tighten the IP stack, the patch-management 
solutions, as well as the physical security. 

It is often found that Layer-2 security is not designed adequately, or in some 
cases is simply absent, which makes all the application-layer security 
measures futile. Senior IT management and database administrators need to 
work with systems administrators to amicably formulate an end-to-end 



security solution. This applies to all database-centric solutions, irrespective of 
whether they are off-the-shelf or FOSS-based. 
 

Parithy
Typewritten Text
Source : http://www.opensourceforu.com/2011/05/securing-database-servers/


	SECURING DATABASE SERVERS
	Why is typical security not enough for database servers?
	Securing database servers
	NAT and PAT
	A demilitarised zone (DMZ)
	Content-based firewalls
	SSL connections
	IPSec security

	Securing open source databases
	Summary




