SECONDARY STORAGE AND SYSTEM SOFTWARE - I

3.1 Disks

- Compared with time for memory access, disk access is always expensive.
- Disk drives belong to a class of devices called direct access storage devices(DASDs).
- Hard-disks offer high capacity and low cost per bit(commonly used).
- Floppy disks are inexpensive, slow and hold little data.
- Removable disks use disk cartridges that can be mounted on same drive at different times.data can be accessed directly.

3.1.1 Organization of Disks

- The information on disk is stored on the surface of 1 or more platters. (Fig 3.1)
- The information is stored in successive **tracks** on the surface of the disk.(Fig 3.2)
- Each track is divided into **sectors**.
- A sector is the smallest addressable portion of a disk.
- Disk drives have a number of platters.
- The tracks directly above one another form a **cylinder(Fig 3.3)**
- All information on a single cylinder can be accessed without moving the arm that holds the read/write heads.
- Moving this arm is called seeking.

Figure 3.1 Schematic illustration of disk drive.

Figure 3.2 Surface of disk showing tracks and sectors.

Figure 3.3 Schematic illustration of disk drive viewed as a set of seven cylinders.

3.1.2 Estimating Capacities and space needs

In a disk, each platter has 2 surfaces, so number of cylinders is same as number of tracks on a single surface.

Since a cylinder consists of a group of tracks, a track consists of a group of sectors, a sector has a group of bytes, track, cylinder and drive capacities can be computed as follows

Track capacity = number of sectors per track × bytes per sector Cylinder capacity = number of tracks per cylinder × track capacity Drive capacity = number of cylinders × cylinder capacity.

Given a disk with following characteristics

Number of bytes per sector = 512 Number of sectors per track = 63 Number of tracks per cylinder = 16 Number of cylinders = 4092

How many cylinders does the file require if each data record requires 256 bytes? Since each sector can hold two records, the file requires

$$\frac{50\ 000}{2} = 25\ 000\ \text{sectors}$$

One cylinder can hold

$$63 \times 16 = 1008$$
 sectors

so the number of cylinders required is approximately

$$\frac{25\ 000}{1008}$$
 = 24.8 cylinders

3.1.3 Organizing Tracks by Sector

Two ways to organize data on disk: by sector and by user defined block.

The physical placement of sectors

Different views of sectors on a track:

- Sectors that are adjacent, fixed size segments of a track that happen to hold a file(Fig 3.4a). When you want to read a series of sectors that are all in the same track, one right after the other, you often cannot adjacent sectors. In Fig 3.4a, it takes thirty-two revolutions to read the entire 32 sectors of a track.
- Interleaving sectors: leaving an interval of several physical sectors between logically adjacent sectors. Fig 3.4(b) illustrates the assignment of logical sector content to the thirty-two physical sectors in a track with interleaving factor of 5. In Fig 3.4b, It takes five revolutions to read the entire 32 sectors of a track.

Figure 3.4 Two views of the organization of sectors on a thirty-two-sector track.

cluster

A group of sectors handled as a unit of file allocation. A cluster is a fixed number of contiguous sectors

extent

A physical section of a file occupying adjacent clusters.

fragmentation

Unused space within a file.

- Clusters are also referred to as allocation units (ALUs).
- Space is allocated to files as integral numbers of clusters.
- A file can have a single extent, or be scattered in several extents.
- Access time for a file increases as the number of separate extents increases, because
 of seeking.
- Defragmentation utilities physically move files on a disk so that each file has a single extent.
- Allocation of space in clusters produces fragmentation.
- A file of one byte is allocated the space of one cluster.
- On average, fragmentation is one-half cluster per file.