
STUDY OF PRIVILEGE ESCALATION
ATTACK ON ANDROID AND ITS

COUNTERMEASURES

REJO MATHEW

Department of Information Technology, NMIMS University, MPSTME,
Mumbai, Maharashtra 400056, India

rejo.mathew@nmims.edu

Abstract :

Android is most commonly used platform for smartphones today which boasts of an advanced security model
having MAC and sandboxing. These features allow developers and users to restrict the execution of an
application to the privileges assigned. The exploitation of vulnerabilities of the program is confined
within the privilege boundaries of an applications sandbox. Privilege escalation attacks have grown
manifold as the use of android systems have increased. Different kinds of mechanisms have provided
some sort of respite to the developers but the security feature handling by the developers has not
helped much. In this paper we discuss the basics of the privilege escalation attack and the various
techniques used to counter and prevent this problem.

Keywords: privilege escalation attacks ; sandboxing; android security.

1. Introduction

The popularity of smartphones and the vast number of the corresponding applications makes these
platforms attractive to attackers. Currently, various forms of malware e x i s t f o r smartphone platforms;
including android. Most smart phones rely entirely on application sandboxing and privileged access for
security. Applications are isolated and granted privileged permissions only. The application performs
actions which are explicitly allowed in the application’s sandbox. Android checks corresponding permission
assignments at runtime. Hence, an application is not allowed to access privileged resources without having
the right permissions.
In this paper we show that Android’s sandbox model is conceptually flawed and actually allows
privilege escalation attacks. This is not an implementation bug, but rather a fundamental flaw. In
Section 2 we discuss the different Android security mechanisms and briefly explain how the privilege
escalation attack can be carried out bypassing the sandboxing feature. In Section 3, we show the privilege
escalation attack. In Section 4, we discuss the related work for the prevention of this kind of attacks and the
various models. In Section 5, we analyze the various countermeasures and desirability of the solutions. In
Section 6, we conclude based on observations

2. Android Security Mechanisms

Here we discuss the Android security mechanisms in brief.
Discretionary Access Control (DAC): The DAC mechanism is based on files (objects) and process
(subjects) which access rules. The rules are set and specified to have better access control mechanism.
Sandboxing: Android is a privilege separated operating system. Sandboxing isolates applications
from each other and from system resources. System files are owned by either the “system” or “root” user,
while other applications have own unique identifiers.
Permission Mechanism: Applications may declare custom types of permission labels to restrict
access to own interfaces. Required permissions are explicitly specified in a Manifest file and are approved
at installation time based on checks against the signatures of the applications declaring these
permissions and user confirmation. At runtime, the reference monitor checks whether the application of this
component possesses requisite permissions.
Component Encapsulation: Application components can be specified as public or private.

Rejo Mathew / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.09 September 2012 4078

Application Signing: Android uses trust based permission mechanism which is verified by third party.
But it need not be signed by a certificate authority. It is just a self signed certificate. The certificate is
included in its APK file such that the signature is can be validated at install time.

3. Privilege Escalation Attack on Android

Fig 1: Privilege Escalation Attack on Android

Fig 1 illustrates an example of privilege escalation attack on Android. In the figure, there are three applications
running in their own DVMs. Application 1 has no permissions. The components in application 2 is not guarded
by any permissions, they are accessible by components of any other application. As a result, both components of
application 1 can access components 1 in application 2. Application 2 has permission P1, Therefore, both
components of application 2 can access component 1 of application 3 which is protected by permission P1.
From the fig we observe that component 1 of application 1 is accessing component 1 of application 2. But it
does not have permission P1, so it is not allowed to access component 1 of application 3. On the other hand,
application 2 has permission P1. Hence, component 1 of application 2 is allowed to access component 1 of
application 3. Therefore, although component 1 of application 1 is not allowed to access component 1 of
application 3, it can access it via component 1 of application 2. Therefore, the privilege of application 2 is
escalated to application 1 in this case. In order to prevent this attack, component 1 of application 2 should
enforce that components accessing it must possess permission P2. This can be done at code level or by guarding
component 1 by permission P2. However, this relies on application developers to perform the enforcement at
the right places. This is an error prone approach as application developers may not be security experts. [2]

4. Related Work

The privilege escalation attack on Android was first proposed by Davi et al. [1] in which they demonstrated an
example of the attack. They showed that a genuine application exploited at runtime or a malicious application
can escalate granted permissions. However, they did not suggest any defense for the attack in the paper. The
most relevant works are security extensions to Android security architecture, namely Saint [12] and Kirin
[6, 7], as they could provide some measures against privilege escalation attack. Saint is a policy extension
which allows application developers to define comprehensive access control rules for their components.
Saint provides a mechanism to ensure that the caller has at least the same permissions as a callee, as
a necessary condition to prevent privilege escalation attacks. However, Saint assumes that access to
components is implicitly allowed. It provides certain protection against privilege escalation attacks as the
application can control which applications can access it. However, this put the burden of enforcing security to
application developers which is error prone as most of them are not security experts. Here we see a similarity
with the approach undertaken in C / C + + languages to delegate bounds checking to developers. Despite
many years of research, a t t acks tha t exploit out-of-bounds errors in C and C++ programs are still
prevalent: New software bugs continuously appear allowing adversaries to perform runtime exploits.
Thus, we believe, similarly it is an error-prone approach to rely on developers to define correct Saint
policies or to define them at all.
Kirin is an application certification service to mitigate malware at install time. Kirin is a tool that analyzes
Manifest files in the APK of the applications to ensure that granted permissions comply with a system-wide
policy. I t a n a l y s e s p e r m i s s i o n s t h a t require dangerous combinations of permissions [7] or it
can analyze a superposition of permissions granted to all applications installed on a platform [6]. However,
their approach cannot identify applications vulnerable to privilege escalation attack. The latter approach allows
detection of applications vulnerable to privilege escalations attacks as it provides a picture of potential data
flows across applications. Nevertheless, as it analyzes potential data flows (as opposite to real data flows)
and cannot judge about local security enforcements made by applications (by means of reference monitor

Rejo Mathew / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.09 September 2012 4079

hooks), it suffers from false positives. Thus, it is useful for manual analysis, but cannot provide reliable
decisions for automatic security enforcements.
Enck et al. [8] describe Android security mechanisms in details. Burns [3, 4] provides guidance on
developing secure applications on the Android platform. Schmidt et al. [14] survey tools which can
increase device security and also shows example of Trojan malware for Android [13]. In [11] Nauman et al.
proposed p e r m i s s i o n framework allowing users to approve a subset of permissions the application
requires at installation time, and also impose constraints for each permission. Chaudhuri [5] presents a
core formal language based on type analysis of Java constructs to describe Android applications
abstractly and to reason about their security properties. Shin et al. [18] formalize Android permission
framework by representing it as a state-based model which can be proven to be secure with given security
requirements by a theorem prover. Barrera et al. [2] propose a methodology to analyze permission usage
by various applications and provides results of such an analysis for a selection of 1,100 Android
applications. Mulliner[10] presents a technique for vulnerability analysis (programming bugs) of SMS
implementations on different mobile platforms including Android. . Shabtai et al. [16, 17] provide a
comprehensive security assessment of Android security mechanisms and identify high-risk threats, but
do not consider a threat of a privilege escalation attack we describe in this paper. A recent kernel-based
privilege escalation attack [9] shows how to gain root privileges by exploiting a memory related
vulnerability residing in the Linux kernel. In contrast, our attack does not require vulnerability in the
Linux kernel, but instead relies on a compromised (vulnerable or malicious) user space application.
Moreover, Shabtai et al. [15] show how to adopt the Linux Security Module (LSM) framework for the
Android platform, which mitigates kernel-based privilege escalation attacks such as [9]. Jakobsson et al.
[19] proposed a software based attestation approach to detect any malware that executes or is activated by
interrupts. Based on memory-printing of client devices, it makes it impossible for malware to hide in RAM
without being detected. TaintDroid [20], based on taint analysis, tracks the flow of privacy-sensitive data. When
the data are transmitted over the network, users are notified to identify
misbehaving applications. QUIRE [21] is a security solution that can defend against privilege escalation attacks
via confused deputy attacks. To address this problem, when there is an Inter Process Communication (IPC)
request between Android applications, QUIRE [21] allows the applications to operate with a reduced privilege
of its caller by tracking the call chain of IPCs. Chan [36] et al. proposed a vulnerability checking system to
detect benign applications which fail to enforce the additional checks on permissions granted.

5. Privilege Attack Measures and Considerations

Table 1: Privilege escalation Attack Analysis

Name of Measure Type Technique Used Effective in Not Effective in
A Vulnerability
checking system
 [2]

Checking
permissions

AndroidManifest.xml
file used to define
permissions
to the application

Classifying which
applications are
vulnerable to
attacks

i. Cannot Detect all
kinds of privilege
escalation attacks
ii. Code level
checking is missing

Kirin [6][7] Checks security
critical
vulnerable
links

 Focuses on directly
reachable interfaces

Transitive permission
attacks still possible

Saint [12] Application
isolation and
protection

Fine grained Access
Control Model

Prevention of
browser attack [9]

i. Additional security
features to the
application
ii. Developers
defining permissions
are more error-prone

Porscha [23] Application
isolation and
protection

Policy-oriented secure
content handling

Improvement on
model proposed by
Saint

i. Data without proper
policy tagging can
pass through
ii. Attacks based on
control flows

TaintDroid [20] Detection and
checking of
privileges

Dynamic Taint Analysis Addresses data
flows

i. Covert channel
exploiting sensitive
information [24]
ii. Attacks based on

Rejo Mathew / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.09 September 2012 4080

control flows
iii. Performance
penalty is very high

Apex [11] Application
isolation and
protection

Deny/accept permission
at install time

User friendly and
makes Android
very flexible

i. Relies on user
knowledge
ii. Transitive
permission attacks
still possible

CRePE [25] Deny/accept
permissions
granting

Context-Related Policy
Enforcement for
Android

Can use it as
company policy
and prevent attacks

i. only few
functionalities are
blocked
ii. Transitive
permission attacks
still possible

QUIRE [21] Prevention of
attack
especially
confused
deputy attack

Non System centric
system policy

It addresses attacks
that exploit
vulnerable
interfaces of trusted
applications

i. Failure to detect
and prevent colluding
unknown attacks
ii. Covert channel
exploiting possible

IPC
Inspection [26]

Prevention of
attack
especially
confused
deputy attack

 No policy
framework so fast
and better results.
Can be used to
detect and prevent
at both install time
and runtime

i. Failure to detect
and prevent colluding
unknown attacks ii.
Covert channel
exploiting possible
iii. Only Control
channels covered.
Data channels can be
exploited
iii. Neglects
permissions classified
as normal
iv. Less general than
other prevention
mechanisms
v. Not compatible
with legacy Android
systems

ComDroid [27]
Stowaway [28]

Checks security
critical
vulnerable
links

Static Analysis Tool It warns the
developer from
broadcasting
privacy sensitive
data

i. Failure to detect
and prevent colluding
unknown attacks

XmanDroid [22] Detection and
prevention

System centric system
policy

i. Prevents attacks
on runtime
ii. Detects
transitive
permission usage
over
any number of
hops
iii. Handles
exceptional cases
(e.g.,pending
intents and
dynamic broadcast
receivers).

i. Failure to detect
and prevent unknown
attacks
ii. False detection
rates are higher
iii. Gets more
complex when rate
increases

Rejo Mathew / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.09 September 2012 4081

6. Conclusion

Non-privileged applications can escalate permissions by invoking poorly designed higher-privileged
applications that do not sufficiently protect their interfaces. Although recently proposed extensions to Android
security mechanisms [6,12] aim to address the problem of poorly designed applications, they suffer from
practical shortcomings. Saint [12] provides a means to protect interfaces of applications, but relies on
application developers to define Saint policies correctly, while Kirin [6] can detect data flows allowing privilege
escalation attacks, but results in false positives.
From the analysis we can imply that Android’s sandbox model fails to confine boundaries against runtime
attacks as the permission system does not check transitive privilege usage. Most of the methods fail to address
colluding attacks even though few of them are close enough [22].Looking forward to techniques that can handle
all kinds of privilege escalation attacks providing enhanced security keeping developers free from thinking
about Android security problems.

References

[1] L. Davi: A. Dmitrienko: A.-R. Sadeghi: M. Winandy (2010); Privilege escalation attacks on Android, ISC.
[2] Patrick P.F.Chan: Lucas C.K.Hui:S.M. Yui (2011); A Privilege Escalation Vulnerability Checking System for Android Applications,

IEEE
[3] J. Burns (2008): Developing secure mobile applications for Android.
[4] J. Burns. Black Hat (2009); Mobile application security on Android.
[5] A. Chaudhuri (2009); Language-based security on Android, ACM SIGPLAN, pages 1–7.
[6] W. Enck:M. Ongtang:P.McDaniel (2008); Mitigating Android software misuse before it happens. Technical Report

,Pennsylvania State University.
[7] W. Enck: M. Ongtang: P.McDaniel (2009); On lightweight mobile phone application certification, ACM CCS ’09, pages 235–

245.
[8] W. Enck: M. Ongtang: P. McDaniel (2009); Understanding Android security, IEEE Security and Privacy, 7(1):50–57
[9] A. Lineberry:D.L.Richardson:T.Wyatt (2010); These aren’t t h e permissions you’re looking for, BlackHat
[10] C. Mulliner (2009); Fuzzing the phone in your phones, Black Hat USA
[11] M. Nauman: S. Khan: X. Zhang (2010); Apex: Extending Android permission model and enforcement with user-defined runtime

constraints,ASIACCS ’10, pages 328–332. ACM
[12] M. Ongtang: S.McLaughlin: W. Enck: P. McDaniel (2009); Semantically rich application-centric security in Android. In

ACSAC ’09, pages 340–349. IEEE Computer Society.
[13] A-D.Schmidt: H.-G. Schmidt: L.Batyuk: J. H. Clausen: S.A.Camtepe:S.Albayrak:C. Yildizli (2009); Smartphone malware

evolution revisited: Android next target?, Malware 2009, pages 1–7.
[14] A.-D. Schmidt: H.G. Schmidt: J. Clausen: K.A.Yuksel:O.Kiraz:A.Camtepe:S.Albayrak (2008); Enhancing security of linux-based

Android devices, Lehmann.
[15] A. Shabtai:Y.Fledel:Y.Elovici (2010); Securing Android powered mobile devices using SELinux, IEEE Security and Privacy,

8:36–44.
[16] A. Shabtai:Y. Fledel:U.Kanonov: Y. Elovici:S. Dolev (2009); Google Android: A state-of-the-art review of security mechanisms,

CoRR, abs/0912.5101.
[17] A.Shabtai:Y.Fledel:U.Kanonov:Y.Elovici:S.Dolev:C.Glezer (2009); Google Android: A comprehensive security assessment.

IEEE Security and Privacy, 8(2):35–44x
[18] W. Shin:S. Kiyomoto: K. Fukushima:T. Tanaka(2010); A formal model to analyze the permission authorization and

enforcement in the Android framework invited paper. In SecureCom 2010
[19] M. Jakobsson: K.-A. Johansson (2010); Retroactive detection of malware with applications to mobile platforms,” HotSec’10, pp. 1–13.
[20] W.Enck: P.Gilbert:Sheth.A.N(2010);Taintdroid: An information-flow tracking system for real-time privacy monitoring on

smartphones, 9th USENIX Symposium on Operating Systems Design and Implementation
[21] M. Dietz: S.Shekar:Wallach(2011); Quire: lightweight provenance for smartphone operating systems, USENIX Security Symposium
[22] Sven Bugiel:Lucas Davi:Alexandra Dmitrienko:Thomas Fischer:Ahmed-Reza Sadeghi (2011); XManDroid: A New Android

Evolution to Mitigate Privilege Escalation Attacks, Technische University.
[23] M.Ongtang: K.Butler: P.McDaniel (2010); Porscha: Policy oriented secure content handling in Android. In ACSAC'10:
[24] R. Schlegel:K. Zhang: X. Zhou: M. Intwala: A. Kapadia:X. Wang (2011); Soundcomber: A Stealthy and Context-Aware Sound Trojan

for Smartphones, NDSS, pages 17-33.
[25] M. Conti: Nguyen:B. Crispo (2010); CRePE: Context-related policy enforcement for Android, ISC 2010
[26] A. P. Felt:H. Wang: A. Moshchuk: S. Hanna:E. Chin (2011); Permission re-delegation: Attacks and defenses. USENIX Security

Symposium
[27] E. Chin: A. P. Felt:K. Greenwood:D.Wagner (2011); Analyzing inter-application communication in Android. MobiSys.
[28] A. P. Felt:E. Chin:S. Hanna: D. Song:D. Wagner (2011); Android permissions demystified. TR, Berkeley.

Rejo Mathew / International Journal of Engineering Science and Technology (IJEST)

ISSN : 0975-5462 Vol. 4 No.09 September 2012 4082

	STUDY OF PRIVILEGE ESCALATIONATTACK ON ANDROID AND ITSCOUNTERMEASURES
	Abstract
	Keywords
	1. Introduction
	2. Android Security Mechanisms
	3. Privilege Escalation Attack on Android
	4. Related Work
	5. Privilege Attack Measures and Considerations
	6. Conclusion
	References

