International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

SEMANTIC SWARM INTELLIGENCE FOR CANDIDATE
LINKS

Ms.Susan Geethu.D.KI, Ms. R.Subhaz, Dr.S.Palaniswami’

'PG Scholar, *Assistant Professor
1’2Department of Computer Science and Engineering, Sri Krishna College of Technology,
Coimbatore, India
lgeethudaniel@gmail.com, %kris.subha@gmail.com
*Principal, *Government College of Engineering,
Bargur, Krishnagiri, India
*joegct81@yahoo.com

ABSTRACT

Requirements traceability is an important activity undertaken as part of ensuring the quality of software in
the early stages of the Software Development Life Cycle (SDLC). Requirements tracing of natural
Language artifacts consists of document parsing, Candidate Link Generation, evaluation and analysis.
Candidate Link Generation deals with checking if the high-level artifact has been fulfilled by the low-level
artifact. The Candidate Link can be established using Swarm Techniques which generates Requirements
Traceability Matrices (RTMs) between textual requirements artifacts (high level requirements traced to low
level requirements, for example) with better accuracy than traditional information retrieval techniques. The
Semantic Relatedness between the terms is not considered in the existing system; hence the Candidate Link
Generation is not effective. In the proposed system, a hybrid technique combining both the Semantic
Ranking and Pheromone Swarm is implemented. Simple swarm agents are given freedom to operate on
their own, determining the search path randomly based on the environment. Pheromone swarm agent
decides on what term to select or what path to take is influenced by presence of pheromone markings on the
inspected object. Semantic Graph is constructed using semantic relatedness between two terms, computed
based on highest value path connecting any pair of the terms. The performance is evaluated with Simple,
Pheromone and Semantic Pheromone Swarm techniques. The Semantic Pheromone Swarm provides better
results when compared to Simple and Pheromone Swarm Techniques.

KEYWORDS

Information Retrieval, Requirements Traceability, Semantic Rank, Software Engineering & Swarms

1. INTRODUCTION

Requirement collection plays the major role, in developing a project. If requirements are
captured, they may not be formally documented, analyzed, kept up to date or traced as a software
development life cycle progresses. The lack of formal requirements or lack of quality
requirements leads to poor software quality. Activities are undertaken to improve the quality of
requirements including requirements consistency checking, requirements tracing etc.These
techniques may be more computationally complex than other techniques that have been widely
applied in requirements engineering (such as information retrieval techniques for requirements
tracing). Some of these activities have been supported by automated techniques. These techniques
though are not fully automatic, are not general-purpose, have not been validated on large, real-
world systems in numerous domains, and still require much effort on the part of human analyst.
DOI : 10.5121/ijci.2012.1301 1

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

As the result, researchers continue to search for new and better techniques to improve the quality
of requirement. Candidate link generation is concerned with retrieving relevant information [4].
Swarm algorithm is used to rank retrieved low-level requirement elements that may be relevant to
high-level requirements which is adapted for candidate link generation. Researchers have
successfully applied Swarm Techniques to a number of problems in software maintenance.

1.1 Swarm Intelligence

Swarm Intelligence (SI) is the collective behavior of decentralized, self-organized systems,
natural or artificial. SI systems typically employ a relatively large population of agents, which
interact both between themselves and the environment [4]. As a result, all these agents, being
simple, unable to reason a decision just by themselves, share knowledge and optimize their
behavior on the basis of the knowledge shared.

1.2 Ant Colony Optimization

The most important fact about ant colonies is that they base their choice of path to a food source
completely on the pheromone level. At first, when they start searching for a food source, they
simply wander around. After an ant finds a food source, on its way back to the nest, it lays down a
pheromone trail, which increases the possibility of the fellow ants locating the food source. The
fellow ants then follow the pheromone trace [4] and if they locate the food source, on their way
back to the nest they lay down pheromone trails as well. If they did not find the food source, or
the pheromone trail is far from optimal and it takes the ants too much time to get back to the nest,
the pheromone trails evaporate, giving an opportunity to the other ants to locate the same food
source via shorter path. Fig 1 represents the behavior of ants when they are looking for food. In
the first case, an ant has just located a food source and left a pheromone trail to this food source.

Figure 1. Ant colony behavior

The second case shows the moment when lots of ants have already discovered the food source,
but using different paths. Finally, the third case shows that at some point most ants are using the
“optimal” path. Actually, the path might still not be optimal, but it should be rather close to

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

optimal if enough agents are present. That is why this algorithm is perfectly suitable for NP-
complete problems such as the travelling salesman one.

1.3 Semantic Ranking

Semantic relatedness between two terms can be computed based on highest value path connecting
any pair of the terms [3]. In finding highest value, the different meanings (senses) that appear
between each word are determined. High Level document terms are identified and TF-IDF value
is computed for all sensible words. Each word is compared with all other meaningful word. The
highest sensible of each word is computed. From the computed value semantic-graph is
constructed. In graph construction, using Word Net, semantic relatedness between two terms is
identified.

1.4 Requirements Traceability

Requirements traceability is an important activity undertaken as part of ensuring the quality of
software in the early stages of the Software Development Life Cycle. Requirements tracing is a
sub-area of requirements management within software engineering. It is mainly concerned with
keeping track of the existence of requirements and providing bi-directional relationships between
associated requirements [4]. The benefit for users is that the sub-area allows them to trace the
origin of a requirement and keep track of every change made to it. The typical stages of
requirements tracing of natural language documents are document parsing, candidate link
generation, candidate link evaluation, and traceability analysis.

The first one, document parsing, addresses element extraction from both types of documents, use
cases and requirements. Secondly, the candidate link generation performs a keyword matching on
the keywords assigned to the requirements and use cases [11]. The candidate link evaluation
assesses the previously generated links, in order to confirm that they are correct. At last, the
traceability analysis deals with analyzing if there are use cases (lower-level) that satisfy a
particular requirement (higher-level) [4]. In this work, we concentrate on adapting the Swarm
Technique to the candidate link generation.

1.5 Terminology

The High and low level textual elements are called documents. Documents contain words or
terms. The collection of all terms from all documents is called the dictionary or vocabulary. The
collection of all terms in a document is called the document corpus. The inverted index lists all
documents where a particular term occurs. Term frequency TF, 4 is the count of how many times a
particular term occurs in a document[4]. Inverse document frequency, IDF,, is a calculated value

IDF, = log (N/ DF) (1

where, N is the total number of documents in a collection, and DF, is document frequency i.e, the
number of documents where a given term occurs in Eq.(1).

1.5.1 Measures

Tracing results are compared with an answer set of correct or ‘‘true’’ links. Results are then been
evaluated using recall and precision. Precision and Recall are two standard measures used to

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

evaluate the algorithm’s effectiveness. In addition to these measures, two other measures also
called as Secondary measures namely DiffArr and MAP are applied for evaluation.

Precision P is calculated as the number of collection of document by number of relevant retrieved
documents is shown in Eq. (2).

Precision, P = (No of Relevant Retrieved) / (No of Relevant in Collection) 2)

Recall R is calculated as the number of relevant retrieved document by number of retrieved
documents is shown in Eq. (3).

Recall, R = (No of Relevant Retrieved) / (No of Retrieved) 3
Using Eq. (2) and (3) F-measure is calculated as
F-Measure = ((Threshold) > + 1) P * R) / (Threshold) *P + R) (4)

DiffArr is calculated as the difference between the average similarity of the True Positives and
False Positives is shown in Eq. (5) and MAP is calculated as the mean precision divided by
relevant documents is shown in Eq. (6) where,

DiffArr =) (True Positives) —). (False Positives) (&)

MAP = (3 Precision) / Relevant Documents) (6)

2. LITERATURE SURVEY

Jane Huffman Hayes, Wei-Keat kong’s research focuses on a technique for requirements tracing,
using Swarm Intelligence [4]. The applicability of Swarm Intelligence to the requirements tracing
problem using pheromone communication and the common text around linking terms or words in
order to find related textual documents are focused. In a nutshell, the technique can generate
requirements traceability matrices (RTMs) between textual requirements artifacts (high level
requirements traced to low level requirements, for example) with equivalent or better accuracy
than traditional information retrieval techniques.

Hayes J, Dekhtyar A, Sundaram S, Howard [5] issues related to improving the overall quality of
the requirements tracing process for Independent Verification and Validation analysts are
addressed. It defines requirements for a tracing tool based on analyst responsibilities in the tracing
process; and introduce several new measures for validating that the requirements have been
satisfied; and present a prototype tool that built, RETRO (REquirements TRacing On-target), to
address these requirements. The results of a study used to assess RETROys support of
requirements and requirement elements that can be measured objectively.

Diaz-Aviles E, Nejdl W, Schmidt-Thieme L (2009) “Swarming to rank for information
retrieval”’[2] is an approach to automatically optimize the retrieval quality of ranking functions is
explained. Taking a Swarm Intelligence perspective, the method Swarm-Rank, which is well-
founded in a Particle Swarm Optimization framework. Swarm Rank learns a ranking function by
optimizing the combination of various types of evidences such content and hyperlink features,
while directly maximizing Mean Average Precision, a widely used evaluation measure in
Information Retrieval.

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

Sundaram S, Hayes JH, Dekhtyar A, Holbrook A[10] states the generation of traceability links or
traceability matrices is vital to many software engineering activities. It is also person-power
intensive, time-consuming, error-prone, and lacks tool support. The activities that require
traceability information include, but are not limited to, risk analysis, impact analysis, criticality
assessment, test coverage analysis, and verification and validation of software systems.
Information Retrieval (IR)[4] techniques have been shown to assist with the automated generation
of traceability links by reducing the time it takes to generate the traceability mapping.

George Tsatsaronis, Irakilis Varlamis, Kjetil Nervag “SemanticRank: Ranking Keywords and
Sentenses Using Semantic Graphs” [3] states that the selection of the most descriptive terms or
passages from text is crucial for several tasks, such as feature extraction and summarization.
Ranking is usually performed using statistical information from text (i.e.., frequency of co-
occurrence, inverse document frequency, co-occurrence information). It states that SemanticRank,
a graph-based ranking algorithm for keyword and sentence extraction from the text which
constructs a semantic graph using implicit links, which are based on semantic relatedness
between text nodes and consequently ranks nodes using different ranking algorithms.

3. METHODOLOGY

High level document Low level document

H={hl,h2, h3..}

!

L= 1,1B..}

l

Apply parsing, stop word
removal, porter’s

stemming algorithm

Apply parsing, stop word
removal, porter’s
stemming algorithm

)

l

TF-IDF iz caleculated TF-IDF iz calculated

Compare each word or
term with
Veocabulary/dictionary

!

Apply simple swarm
algorithm

}

Apply Pheromone swarm
alzorithm

|

Apply SemanticRanking
algorithm

Vocabulary/
Dictionary

Semantic related terms

¥
Apply Semantic
Pheromone swarm
algorithm

l Closely related terms

Figure 2. Overall design of candidate link generation.

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

A swarm agent starts from a high level textual document and follows a word or term that is
present in the high level document via the common vocabulary. In the proposed system a
simplified Ant colony algorithm, Simple and Pheromone Swarm are used to rank retrieved low-
level requirement elements that may be relevant to high-level requirements [4]. Fig.2 describes
that the documents are parsed, stop word such as (the, is, of, if, then) are removed, stemming
(words are reduced to their stem such as ‘comput-‘For ‘computer’ and ‘computing’) is preformed
[8]. Finally stemmed tokens are gathered, term frequency TF,4 and inverse document frequency
IDF, are calculated and TF-IDF value for each term should be found [4]. The TF-IDF values are
sorted and the simple swarm selects the term randomly and count of terms that match the low
level term from high level are calculated and sorted. The swarm concentrate on the top terms in
the document rather than exploring all. Finally stemmed tokens are gathered. Term frequencies
for each document and document frequencies for each term in the vocabulary are calculated.
Term frequency TF,4 is the count of number of times a particular word / term occurred in a
document. Inverse document frequency IDF, is calculated using Eq. (1). Using TF,4, IDF,, TF-
IDF weight for each term is calculated using

TF-IDF,4 . TF,, * IDF.,. (7)

The swarm agents are given freedom to operate on their own, determining the search path based
on the environment. The agent randomly selects a term or word. The count of terms that match
the low level term from high level are calculated and sorted. Semantic relatedness between two
terms can be computed based on highest value path connecting any pair of the terms. In finding
highest value, the different meanings (senses) that appear between each word are determined.
Pheromone swarm deposits on the links and terms to influence the path selection behaviour of a
swarm agent. The highest value terms obtained from the semantic relatedness and TF-IDF are
given as marking for Pheromone swarm. The marking deposited allows the agent to search,
discover & guide swarm members to a target location.

4. SYSTEM DESIGN

4.1 Text Pre-Processing

High level documents are collected from customers and low level documents are collected from
business analysis team [4]. For both high/low level document parsing is performed which results
in tokens of words. From tokens, stop words are removed and stemming is performed using
Porter’s algorithm [8].

Porter’s algorithm consists of following steps:

e Deals with plurals and past participles.
E.g.: Motoring - Motor
e Deals with pattern matching on some common suffixes.
E.g.: Happy - Happi,
Relation - Relate.
e Deals with special word endings.
E.g.: Hopeful - Hope.
e Checks the stripped word against more suffixes in case the word is compounded.
E.g. Allowance - Allow,
Inference - Infer.
e Check if the stripped word ends in a vowel and fixes it appropriately.
E.g. Controll - control.

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

Finally stemmed tokens are gathered. Term frequencies for each document and document
frequencies for each term in the vocabulary are calculated. Term frequency TF 4 is the count of
number of times a particular word / term occurred in a document. Inverse document frequency
IDF, is calculated using Eq. (1). Using Eq. (7) TF.4 , IDF,, TF-IDF weight for each term is
calculated.

4.2 Simple Swarm

High level and low level documents are given as input. High level document h terms are taken
and terms are sorted based on TF-IDF weight [4]. The swarm agents are given freedom to operate
on their own, determining the search path based on the environment. The agent randomly selects
a term or word. A record of inverted index is maintained to list the occurrence of low level
document. Then a Vocabulary set of all terms in all documents are maintained and link to low
level documents are noted. Term frequency of terms is sorted. The count of terms that match the
low level term from high level are calculated and sorted.

A loop through all high level elements is then executed that undertakes the following:

- A swarm agent is assigned to each high level element;

- The terms in that high level element are ordered by TF-IDF weight;

- The agent randomly selects a term from the top 10 or less terms (per the corpus for the
whole document);

- using the selected term, the agent “crawls” from the high level element to the selected
term in the inverted dictionary, i.e., the vocabulary space;

- once the agent descends to the level of the inverse dictionary, the agent again randomly
selects from among the top 10 documents ordered by the term frequency;

-and once a low level element is picked, the agent moves down to that low level element

[4].
When all agents reach the low level elements, we can determine candidate links.

4.3 Pheromone Swarm

Pheromone swarm deposits on the links and terms to influence the path selection behaviour of a
swarm agent. The selection of the terms and links by the swarm agents is distinction between the
simple swarm method and the swarm with pheromone method. There is no predetermined
knowledge about the space being traversed. The agent’s decision on what term to select or what
path to take is influenced by presence of pheromone markings on the inspected object, e.g., terms
or link, the particular term is a neighbor to some other term in low-level document. Pheromone
swarm deposited allows the agent to search, discover & guide swarm members to a target
location.

A loop through all high level elements is then executed that undertakes the following:

- A swarm agent is assigned to each high level element;

- The terms in that high level element are ordered by TF-IDF weight value;

- the agent selects a term from the top 10 or less terms (per the corpus for the whole
document) influenced by presence of pheromone markings on the inspected object ;

- using the selected term, the agent “crawls” from the high level element to the selected
term in the inverted dictionary, i.e., the vocabulary space;

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

- once the agent descends to the level of the inverse dictionary, the agent again with the
presence of pheromone markings selects from among the top 10 documents ordered by
the term frequency; and once a low level element is picked, the agent moves down to that
low level element[4].

When all agents reach the low level elements, we can determine candidate links.
4.4 Semantic Ranking

For the High Level document terms TF-IDF value is computed and semantic-graph is
constructed. In graph construction, using Word Net, semantic relatedness between two terms is
identified. Semantic relatedness between two terms can be computed based on highest value path
connecting any pair of the terms. In finding highest value, the different meanings (senses) that
appear between each word are determined [3]. The highest value terms obtained from the
semantic relatedness are sorted in descending order. The documents with highest important word
similarity are ranked as top position. This forms a Graph structure i.e., the document which get
many No of important words gets the highest priority node. Other documents with least words are
ranked next which is known as Page Rank.

4.5 Semantic Pheromone Swarm

Pheromone swarm deposits on the links and terms to influence the path selection behaviour of a
swarm agent. The selection of the terms and links by the swarm agents is distinction between the
simple swarm method and the swarm with pheromone method. There is no predetermined
knowledge about the space being traversed. The agent’s decision on what term to select or what
path to take is influenced by presence of pheromone markings on the inspected object, e.g., terms
or link, the particular term is a neighbor to some other term in low-level document. Pheromone
swarm deposited allows the agent to search, discover & guide swarm members to a target
location.

A loop through all high level elements is then executed that undertakes the following:

- A swarm agent is assigned to each high level element;

- The terms in that high level element are ordered by TF-IDF weight and semantic
relatedness value;

- the agent selects a term from the top 10 or less terms (per the corpus for the whole
document) influenced by presence of pheromone markings on the inspected object ;

- using the selected term, the agent “crawls” from the high level element to the selected
term in the inverted dictionary, i.e., the vocabulary space;

- once the agent descends to the level of the inverse dictionary, the agent again with the
presence of pheromone markings selects from among the top 10 documents ordered by
the term frequency; and once a low level element is picked, the agent moves down to that
low level element[4].

When all agents reach the low level elements, we can determine candidate links.
S. EXPERIMENTAL RESULTS

The Fig 3 shows the high level and low level documents are taken, text pre-processing such as
parsing, stop word removal, stemming are preformed. Finally stemmed tokens are gathered.

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

AWINDOWS \system 32\cmd_exe

Figure 3. Stemmed output

Fig.4 shows for the gathered words term frequency TF, 4 and inverse document frequency IDF, are
calculated and TF-IDF value for each term are found. The TF-IDF values are sorted and fig.5
shows the TF-IDF values are sorted and the simple swarm selects the term randomly and count of
terms that match the low level term from high level are calculated and sorted.

-85561‘19732
A3

55 B
213 43315
- 6213993?433155 “@.8, ﬂ 39892139337433155
a. 45156951871657755 a.a a. 8

B 521393374
- a.

B a,
331
23855614973262332

155, 8.9,

A 315334615334615385 15384615384615385 a.
384615385, a, 307692307693, 0. 600006 ' -
346153846153846156 3.3153346153346153 a. 1346153346153
I 30762723076923874, 0.15384615384615385, 0.872307692307
- B 3384615384615385 . - 30769230769231, ©.8307692307692308. 0.03076923076
B_83@76923A7692308, P.B15384615384615385, 0.0, 6.615384615384616, @._0153|
B #4615385, 3. 969233?69239? 1.7384615384615385, 0. 1384515384515384?
692307692387693, BA.B61538 4. 1.8, B.8307692307692307 a.
85. 0.8, A. 2615384615384615 a. 553846153846154 5.83 57692337692335
37.10769230769231, 0. 3153846153846153 12, 51538461538461
3. @..@ 61538‘!615385 29123 5 4
3846154, 15 92337 7692, @. E3B?s923 692307
346153346153346156 “21. 184515384615384 9239'?69239'?693
8461 _15384615384615385. 5.446153846153846. B.76923076
a. 7692337692337693 5 246153846153846., A.A6153846153846154, 4. 676923
. A.015384615384615385,. A. 315384615384615335, 29. 123376923376923 -
- I46153B‘161538‘161 28.24615384615384 5,
376?23376?23
8461538461538
3846153, B 915384615384515385 B 315384615384615335 a._ 915384515384515385

Figure 4. TF-IDF Values

Fig.6 shows the TF-IDF values are sorted and the Pheromone swarm selects the term comparing
the neighborhood terms, its TF-IDF values and count of terms that match the low level term from
high level are calculated and sorted. Fig.7 shows that using similarity and TF-IDF values
semantic graph is constructed and number of times the term’s occurrences in the document is
known as page rank and the terms are sorted. Fig.8 shows that semantic pheromone swarm selects
the term comparing the neighborhood terms, its TF-IDF and semantic relatedness values and

count of terms that match the low level term from high level are calculated and sorted.
9

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

mpt - java Main
[LLD Attributes Name Doc Matches Ho Of Matches

build [hhi..txt]
cs [hhi..txt]
catalog [hhi..txt]
delux [hhi..txt]
al [hhi._txt]
builder [hhi..txt]
catalog [hhi. . txt]
bui [hhi..txt]

1

1

dai [hhl..txt. hhb..txt]

builder [hhi..txt]
approv [hh4..txt]
bhenefit [hh3..txt,
assunpt [hh3..txt.
area [1 2]
approv [hh4..txt]
commit [hh3..txt1
benefit [hh3..txt.
affili [hh3..txt]

commit Chh3. _txt]

1
1
hh7_ _txt]1 2
hhe._txt. hh8._txt]

1
i
hh?. _txt]
i
i

as Chh3..txt,. hh7..txt]
avail [hh3__txt, hhd__txt]

custom [hhS. .txt .

hhe . _txt]

avail [hh3..txt,. hhd..txt]

configur [hh3..txt,

conduct [hhé - _txt 1

hh8._txt1
1

avail [hh3__txt, hhd__txt]

commun [hh5. _txt]

Command Prompt - java Main

chang 2 Does Mot Matches

chang Matches 1 8.8

chang Does Not Matches

chang Does Not Matches

chang Does Mot Matches

chang Does Mot Matches

chang Does Mot Matches

compon
compon
compon
compon
compon
compon

compon

DOV A W N H B @B @B BB EE DA W N R

compon
configur
configur
conf igur Matches
configur
conf igur
configur

conf igur Matches

@A E N AW N R

configur Matches

Figure 6. Implementation of Pheromone Swarm

Does Not Matches B8.20556745182012848
Does Mot Matches A.2055674518201 2848
Does Not Matches B8.20556745182012848
Does Mot Matches A.2055674518201 2848
Does Not Matches B.20556745182012848
Does Mot Matches A.2055674518201 2848
Matches 2 B.28556745182012848

Matches 1 B.20556745182012848

Does Mot Matches @ B.26329113924058634
Does Mot Matches B B.26329113924058634
2 B8.26329113924858634

Does Mot Matches B B.26329113924058634
Does Mot Matches @ B.26329113%24058634
Does Mot Matches B B.26329113924058634
3 8.26329113924058634

5 B.26329113924058634

Mot Matches B B.260253164556962625
Not Matches B B.20253164556962H025
Mot Matches B B.260253164556962625
Not Matches B B.2A253164556962H025
Mot Matches B B.260253164556962625

Matches 1 A.2A253164556962HA25

10

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

Terns Similarity Ualue TFIDF Ualue Occurance In A Document

subject 3.5765047705616643 B.5485405485 405486]
meter 2.98458537611A7185 1.4864864864864866 a

gquestion 2.5901786A8492129 A.54A5405405405 406

canp 1.8133923933428269 A.5485 405485 105186 a
cc 1.7698576164185147 1.081P8108168168811

ga 1.5432330003093246 1.891891891891892

sale 1.4667932226343108 1.4864864864864866

lake 1.4411176585616288 1.0819A81081A814@811
address 1.4333826128944887 2.5 4

ect 1.33782793221314%4 6.081P81081681681

clear 1.32686%76558576672 1.3513513513513513

pm 1.2422755154044574 1.A81A81A81AB1A811

seal 1.8226494218496016 B.6756756756 756757

click B.8281645159179953 1.25
request B.7899406505113158 1.25
creek A.780497522589872 1.25

I

suit A.7280221463768232 1.25
£1 A.7117317427098455 1.25
mail B.6864375582838974 5.8
cypress B.6678123973291382 1.25
fort A.6643081537406477 1.25
road B.6563256A21822762 1.25

KRR RR KRR R

travel B.4695725952794135 1.25

Figure 7. Implementation of Semantic Graph

Command Prompt - java Main BEE

detail Does Mot Matches @ 28 7.5815411188611

)

detail Matches 1 B.128 7.581541118861002

detail Does Mot Matches B ©.128 7.581541118861
detail Matches 3 B.128 7.581541118861002
detail Matches 18 B.128 7.581541118861082
detail Matches & O.128 7.581541118061002
detect Does Mot Matches 6.192 14._40388837052346
detect Does Not Matches 0.192 14.40388037852346
detect Does Mot Matches 6.192 14._40388837052346
detect Does Not Matches 0.192 14.40388037852346
detect Does Matches 6.192 14._40388837052346
detect Does Hatches 14.40388A3 7852346

detect Does Matches 14_40388037052346

@ R W NR D AR

detect Does MHatches 14.40388A3 7852346

diagram Does Matches 7.62462846271 7048
diagram Does Hatches 7.624628462717648
diagram Does Matches 7.62462846271 7048
LEETEETY Does Mot Matches 7.624962846271 7048
diagram Does Not Matches 7.624628462717048
LEEYEYY Does Mot Matches 762462846271 7048

diagram Does Not Matches 7.624628462717048

@ N W N R

Does Not Matches @ B.416 7.624628462717048

diagram

document Does Not Matches B B.352 2.7240209295951534E7

document Matches 3 B8.352 2_724082089295951534E7
document Does Not Matches @ B.352 2.7240209295951534E7
document Matches 3 B8.352 2_724082089295951534E7
document Matches 1 O.352 2.7240209295951534E7
document Matches 8 B.352 2_72408289295951534E7

Figure 8. Implementation of Semantic Pheromone Swarm

In this project, techniques such as Simple Swarm, Pheromone Swarm and Semantic ranking
algorithm are proposed. For HLD, LLD documents Simple and Pheromone Swarm techniques are
implemented and Candidate link is generated between the documents. In addition to this,
Semantic Ranking algorithm is implemented along with Pheromone Swarm and results are
obtained. Among these algorithms Semantic Pheromone Swarm provide better result of

11

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

Candidate Link between the documents. Precision, Recall, F-Measure, DiffArr and MAP values
are calculated separately for evaluation between Simple, Pheromone and Semantic Pheromone
Swarm algorithms.

Table I
Results of Simple Swarm
Threshold | Precision | Recall | F-Measure Map DiffArr
0.1 0.718 0.143 0.311 0.718 0.188
0.2 0.182 0.365 0.147 0.450 0.224
0.3 0.270 0.541 0.130 0.390 0.226
0.4 0.370 0.741 0.123 0.385 0.231
0.5 0.455 0.91 0.114 0.399 0.232
0.6 0.560 0.112 0.284 0.426 0.237
0.7 0.638 0.127 0.272 0.456 0.233
0.8 0.721 0.144 0.268 0.489 0.232
0.9 0.815 0.163 0.271 0.525 0.231
1 0.905 0.181 0.275 0.563 0.234
Table II
Results of Pheromone Swarm
Threshold | Precision | Recall F-Measure Map DiffArr
0.1 0.0125 0.025 0.02487562 0.0125 0.209091
0.2 0.025 0.05 0.04901961 0.01875 0.213318
0.3 0.16875 | 0.3375 | 0.32296651 0.06875 0.158816
0.4 0.05 0.1 0.09259259 0.064063 0.125901
0.5 0.0625 0.125 0.11111111 0.06375 0.275041
0.6 0.075 0.15 0.12711864 0.065625 0.275041
0.7 0.0875 0.175 0.14056225 0.06875 0.117526
0.8 0.0999 0.199 0.15151515 0.072656 0.148589
0.9 0.1125 0.2249 | 0.16014235 0.077083 0.319882
12
1 0.0625 0.1249 | 0.08333333 0.075625 0.319882

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

Table III
Results of Semantic Pheromone Swarm
Threshold Precision Recall F-Measure Map DiffArr

0.1 0.225 0.35 0.225 0.225 0.093
0.2 0.325 0.45 0.328 0.275 0.134
0.3 0.8625 1 0.872 0.470 0.204
04 0.525 0.65 0.539 0.484 0.171
0.5 0.625 0.75 0.646 0.512 0.218
0.6 0.725 0.85 0.754 0.547 0.217
0.7 0.825 0.95 0.862 0.587 0.109
0.8 0.924 1 0.952 0.629 0.142
0.9 1 1 1 0.670 1

1 1 1 1 0.703 1

Table 6.1 represents Precision, Recall, F-Measure, Map, and DiffArr of Simple Swarm for SRS
documents. Table 6.2 provides Precision, Recall, F-Measure, Map, and DiffArr of Pheromone
Swarm for SRS documents. Table 6.3 provides Precision, Recall, F-Measure, Map, and DiffArr
of Semantic Pheromone Swarm for SRS documents. By comparing Semantic Pheromone swarm
with Simple Swarm and Pheromone swarm results reveal that Semantic Pheromone Swarm gives
better results for threshold values like 0.89,0.99. Using Semantic Pheromone Swarm Candidate
Link is generated which is shown with high DiffArr and MAP values.

SIMPLE Vs PHEROMONE SWARM

. ﬁ

o A T
\/ v;?f

J)e /

PRECISION

PHEROMONE

0 = T T T T T T T
01 02 03 04 035 06 07 08 09 1
THRESHOLD

Figure 8. Precision Vs Threshold

13

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

SIMPLE Vs PHEROMONE SWARM

12
1
——SIMPLE
08
a‘ -B-SEM PHERO
Z o6
5 \ 4+ PHEROMONE
04 -
02
0

01 02 03 04 03 06 07 08 09 1
THRESHOLD

Figure 9. Recall Vs Threshold

SIMPLE Vs FHEROMONE SWARM

N
M A -

1" -8-SEMPHERO

~+~PHEROMONE

u)("/\ S————s

. ‘_}‘—odpé-«——-——-—‘_

01 02 03 04 05 06 07 08 09 1
THRESHOLD

Figure 10. F-Measure Vs Threshold

SIMPLE Vs PHEROMONE SWARM

08

07 % l-/?u—

0.6 \

0s \ \f_?’.,' _—

04 — / ——SIMPLE

03 {/ -m-SEM PHERO
—+PHEROMONE

02

MAP

0.1 & r—k
0 p—™
01 02 03 04 05 06 07 08 09 1
RECALL

Figure 11. Map Vs Recall

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

SIMPLE Vs PHEROMONE SWARM

1 F
0.8

£ / ~SIMPLE
2 06
z I -B-SEMPHERO
2 04
PHEROMONE

02 4= “-#‘E.\:H—JJ — ——

01 02 03 04 035 06 07 08 09 1
RECALL

Figure 12. DiffArr Vs Recall

Precision, Recall, F-Measure of Simple, Pheromone and Semantic Pheromone Swarm are
compared with Threshold values as shown in Fig. 8, Fig. 9, and Fig. 10. Map and DiffArr of
Simple, Pheromone and Semantic Pheromone Swarm are compared with Recall values of
Semantic Pheromone Swarm are shown in Fig. 11 and Fig. 12. Here high DiffArr and high MAP
value of Semantic Pheromone Swarm implies that Candidate link is generated more effectively
using Semantic Pheromone Swarm technique when compared with Simple and Pheromone
Swarm [4]. High DiffArr refers that the average relevance of true positives is higher than the false
positives and high MAP implies precision is high at various recall values [8].

6. CONCLUSION & FUTURE WORK

The high level and low level documents are taken, text pre-processing such as parsing, stop word
removal, stemming is preformed. Finally stemmed tokens are gathered, term frequency TF,4 and
inverse document frequency IDF, are calculated and TF-IDF value for each term are found. The
TF-IDF values are sorted and the simple swarm selects the term randomly and count of terms that
match the low level term from high level are calculated and sorted. The swarm concentrate on the
top terms in the document rather than exploring all. Semantic ranking algorithm has been applied
and semantic graph has been obtained. For the semantic graph pheromone algorithm has been
applied and list of agent count has been obtained. Thus for the low level documents and high
level documents, candidate link is generated.

As a future work, it can be expanded by using a thesaurus. Latent Semantic Analysis [2]
technique is able to match similarities between multiword expressions, abbreviations, and alpha-
numeric phrases [3] permitting the agents to discover links not only through a single term but
through term synonyms.

REFERENCES

[11 G.Antoniol, G.Canfora, G.casazza, A.D.Lucia, and E.Merlo, “Recovering Traceability Links between
Code and Documentation,” IEEE Trans.Softw.Eng., vol.28, 2002, pp970-983.

[2] Diaz-Aviles E, Nejdl W, Schmidt-Thieme L (2009) “Swarming to rank for information retrieval”.
Proceedings of the 11th annual conference on genetic and evolutionary computation, pp 9-16.

15

International Journal on Cybernetics & Informatics (IJCI) Vol.1, No.3, June 2012

[3] George Tsatsaronis, Irakilis Varlamis, Kjetil Nervag “SemanticRank: Ranking Keywords and
Sentenses Using Semantic Graphs” Proceedings of the 23" international conference on
computational linguistics (coling 2010),pp 1074-1082.

[4] Hakim sultanov, Jane Huffman Hayes, Wei-Keat kong “Application of Swarm Techniques to
requirement tracing” Springkerlink May 2011.

[5] Hayes J, Dekhtyar A, Sundaram S, Howard (2004) “Helping analysts trace requirements: an objective
look™. Proceedings of the 12th IEEE international conference in requirements engineering, 2004, pp
249-259.

[6] Hayes JH, Dekhtyar A, Osborne J (2003) “Improving requirements tracing via information retrieval”.
Proceedings of the 11th IEEE international conference on requirement engineering, p 138.

[7] J.H. Hayes, A. Dekhtyar, S. Sundaram, and S.Howard, “Helping Analysts Trace Requirements: An
Objective Look,” 2004.

[8] M. Porter, “An algorithm for suffix stripping,” program, vol. 14, 1980, pp. 130-137.

[9] Sultanov H, Hayes JH(2010) “Application of Swarm Techniques to requirement engineering:
requirements tracing”. Proceedings of the 18" international requirement engineering conference,
Sydney.

[10] Sundaram S, Hayes JH, Dekhtyar A, Holbrook A (2010) ‘“Assessing traceability of software
engineering artifacts”. Require Eng J 15(3):211-220.

[11] Xuchang Zou, R. Settimi, and J. Cleland-Huang, “Phrasing in Dynamic Requirements Trace
Retrieva,” 2006, pp. 265-272.

Authors

Ms. Susan Geethu.D.K was born in Coimbatore, India in 1988. She received Bachelor of
Technology degree in Information Technology under Anna University, Chennai in 20009.
She is currently pursuing Master of Engineering degree in Computer Science and
Engineering under Anna University, Chennai, India.

Ms. R.Subha received B.E in Computer Science and Engineering from Periyar University
and MLE in Software Engineering from Anna University, Chennai in 2002 and 2006
respectively. At Present, she is working as Assistant Professor in the department of
Computer Science & Engg, Sri Krishna College of Technology, Coimbatore. She is
currently pursuing Ph.D under Anna University, Coimbatore. Her research interest includes

Software Engineering.

16

