
REVERSE POLISH NOTATION CALCULATOR

Most people have learned to write arithmetic expressions with the operators in-between the numbers
((2 + 2) / 5). This is how most calculators let you insert mathematical expressions and probably
the notation you were taught to count with in school. This notation has the downside of needing you
to know about operator precedence: multiplication and division are more important (have a
higher precedence) than addition and subtraction.
Another notation exists, called prefix notation or Polish notation, where the operator comes before
the operands. Under this notation, (2 + 2) / 5 would become (/ (+ 2 2) 5). If we decide to
say + and / always take two arguments, then (/ (+ 2 2) 5) can simply be written as / + 2 2
5.
However, we will instead focus on Reverse Polish notation (or just RPN), which is the opposite of
prefix notation: the operator follows the operands. The same example as above in RPN would be
written 2 2 + 5 /. Other example expressions could be 9 * 5 + 7 or 10 * 2 * (3 + 4) /
2 which get translated to 9 5 * 7 + and 10 2 * 3 4 + * 2 /, respectively. This notation was
used a whole lot in early models of calculators as it would take little memory to use. In fact some
people still carry RPN calculators around. We'll write one of these.
First of all, it might be good to understand how to read RPN expressions. One way to do it is to find
the operators one by one and then regroup them with their operands by arity:

10 4 3 + 2 * -

10 (4 3 +) 2 * -

10 ((4 3 +) 2 *) -

(10 ((4 3 +) 2 *) -)

(10 (7 2 *) -)

(10 14 -)

-4

However, in the context of a computer or a calculator, a simpler way to do it is to make a stack of all
the operands as we see them. Taking the mathematical expression 10 4 3 + 2 * -, the first
operand we see is 10. We add that to the stack. Then there's 4, so we also push that on top of the

stack. In third place, we have 3; let's push that one on the stack too. Our stack should now look like
this:

The next character to parse is a +. That one is a function of arity 2. In order to use it we will need to
feed it two operands, which will be taken from the stack:

So we take that 7 and push it back on top of the stack (yuck, we don't want to keep these filthy
numbers floating around!) The stack is now [7,10] and what's left of the expression is 2 * -. We
can take the 2 and push it on top of the stack. We then see *, which needs two operands to work.
Again, we take them from the stack:

And push 14 back on top of our stack. All that remains is -, which also needs two operands. O
Glorious luck! There are two operands left in our stack. Use them!

And so we have our result. This stack-based approach is relatively fool-proof and the low amount of
parsing needed to be done before starting to calculate results explains why it was a good idea for old
calculators to use this. There are other reasons to use RPN, but this is a bit out of the scope of this
guide, so you might want to hit theWikipedia article instead.

http://en.wikipedia.org/wiki/Reverse_Polish_notation

Writing this solution in Erlang is not too hard once we've done the complex stuff. It turns out the
tough part is figuring out what steps need to be done in order to get our end result and we just did
that. Neat. Open a file named calc.erl.
The first part to worry about is how we're going to represent a mathematical expression. To make
things simple, we'll probably input them as a string: "10 4 3 + 2 * -". This string has
whitespace, which isn't part of our problem-solving process, but is necessary in order to use a simple
tokenizer. What would be usable then is a list of terms of the
form ["10","4","3","+","2","*","-"] after going through the tokenizer. Turns out the
functionstring:tokens/2 does just that:
1> string:tokens("10 4 3 + 2 * -", " ").
["10","4","3","+","2","*","-"]
That will be a good representation for our expression. The next part to define is the stack. How are
we going to do that? You might have noticed that Erlang's lists act a lot like a stack. Using the cons
(|) operator in [Head|Tail]effectively behaves the same as pushing Head on top of a stack
(Tail, in this case). Using a list for a stack will be good enough.
To read the expression, we just have to do the same as we did when solving the problem by hand.
Read each value from the expression, if it's a number, put it on the stack. If it's a function, pop all the
values it needs from the stack, then push the result back in. To generalize, all we need to do is go
over the whole expression as a loop only once and accumulate the results. Sounds like the perfect
job for a fold!

What we need to plan for is the function that lists:foldl/3 will apply on every operator and
operand of the expression. This function, because it will be run in a fold, will need to take two
arguments: the first one will be the element of the expression to work with and the second one will
be the stack.
We can start writing our code in the calc.erl file. We'll write the function responsible for all the
looping and also the removal of spaces in the expression:
-module(calc).
-export([rpn/1]).

rpn(L) when is_list(L) ->
[Res] = lists:foldl(fun rpn/2, [], string:tokens(L, "
")),
Res.
We'll implement rpn/2 next. Note that because each operator and operand from the expression
ends up being put on top of the stack, the solved expression's result will be on that stack. We need
to get that last value out of there before returning it to the user. This is why we pattern match
over [Res] and only return Res.

http://learnyousomeerlang.com/static/erlang/calc.erl
http://erldocs.com/17.3/stdlib/string.html#tokens/2
http://erldocs.com/17.3/stdlib/lists.html#foldl/3
http://learnyousomeerlang.com/static/erlang/calc.erl

Alright, now to the harder part. Our rpn/2 function will need to handle the stack for all values
passed to it. The head of the function will probably look like rpn(Op,Stack) and its return value
like [NewVal|Stack]. When we get regular numbers, the operation will be:
rpn(X, Stack) -> [read(X)|Stack].
Here, read/1 is a function that converts a string to an integer or floating point value. Sadly, there is
no built-in function to do this in Erlang (only one or the other). We'll add it ourselves:
read(N) ->
case string:to_float(N) of
{error,no_float} -> list_to_integer(N);
{F,_} -> F
end.
Where string:to_float/1 does the conversion from a string such as "13.37" to its numeric
equivalent. However, if there is no way to read a floating point value, it
returns {error,no_float}. When that happens, we need to calllist_to_integer/1 instead.
Now back to rpn/2. The numbers we encounter all get added to the stack. However, because our
pattern matches on anything (see Pattern Matching), operators will also get pushed on the stack. To
avoid this, we'll put them all in preceding clauses. The first one we'll try this with is the addition:
rpn("+", [N1,N2|S]) -> [N2+N1|S];
rpn(X, Stack) -> [read(X)|Stack].
We can see that whenever we encounter the "+" string, we take two numbers from the top of the
stack (N1,N2) and add them before pushing the result back onto that stack. This is exactly the same
logic we applied when solving the problem by hand. Trying the program we can see that it works:
1> c(calc).
{ok,calc}
2> calc:rpn("3 5 +").
8
3> calc:rpn("7 3 + 5 +").
15
The rest is trivial, as you just need to add all the other operators:

rpn("+", [N1,N2|S]) -> [N2+N1|S];
rpn("-", [N1,N2|S]) -> [N2-N1|S];
rpn("*", [N1,N2|S]) -> [N2*N1|S];
rpn("/", [N1,N2|S]) -> [N2/N1|S];
rpn("^", [N1,N2|S]) -> [math:pow(N2,N1)|S];
rpn("ln", [N|S]) -> [math:log(N)|S];
rpn("log10", [N|S]) -> [math:log10(N)|S];
rpn(X, Stack) -> [read(X)|Stack].

http://erldocs.com/17.3/stdlib/string.html#to_float/1
http://learnyousomeerlang.com/syntax-in-functions#pattern-matching

Note that functions that take only one argument such as logarithms only need to pop one element
from the stack. It is left as an exercise to the reader to add functions such as 'sum' or 'prod' which
return the sum of all the elements read so far or the products of them all. To help you out, they are
implemented in my version of calc.erlalready.
To make sure this all works fine, we'll write very simple unit tests. Erlang's = operator can act as
an assertionfunction. Assertions should crash whenever they encounter unexpected values, which is
exactly what we need. Of course, there are more advanced testing frameworks for Erlang,
including Common Test and EUnit. We'll check them out later, but for now the basic = will do the job:
rpn_test() ->
5 = rpn("2 3 +"),
87 = rpn("90 3 -"),
-4 = rpn("10 4 3 + 2 * -"),
-2.0 = rpn("10 4 3 + 2 * - 2 /"),
ok = try
rpn("90 34 12 33 55 66 + * - +")
catch
error:{badmatch,[_|_]} -> ok
end,
4037 = rpn("90 34 12 33 55 66 + * - + -"),
8.0 = rpn("2 3 ^"),
true = math:sqrt(2) == rpn("2 0.5 ^"),
true = math:log(2.7) == rpn("2.7 ln"),
true = math:log10(2.7) == rpn("2.7 log10"),
50 = rpn("10 10 10 20 sum"),
10.0 = rpn("10 10 10 20 sum 5 /"),
1000.0 = rpn("10 10 20 0.5 prod"),
ok.
The test function tries all operations; if there's no exception raised, the tests are considered
successful. The first four tests check that the basic arithmetic functions work right. The fifth test
specifies behaviour I have not explained yet. The try ... catch expects a badmatch error to be
thrown because the expression can't work:

90 34 12 33 55 66 + * - +

90 (34 (12 (33 (55 66 +) *) -) +)

At the end of rpn/1, the values -3947 and 90 are left on the stack because there is no operator to
work on the 90that hangs there. Two ways to handle this problem are possible: either ignore it and

http://learnyousomeerlang.com/static/erlang/calc.erl
http://erlang.org/doc/apps/common_test/write_test_chapter.html
http://erlang.org/doc/apps/eunit/chapter.html

only take the value on top of the stack (which would be the last result calculated) or crash because
the arithmetic is wrong. Given Erlang's policy is to let it crash, it's what was chosen here. The part
that actually crashes is the [Res] in rpn/1. That one makes sure only one element, the result, is
left in the stack.
The few tests that are of the form true = FunctionCall1 == FunctionCall2 are there
because you can't have a function call on the left hand side of =. It still works like an assert because
we compare the comparison's result totrue.
I've also added the test cases for the sum and prod operators so you can exercise yourselves
implementing them. If all tests are successful, you should see the following:

1> c(calc).
{ok,calc}
2> calc:rpn_test().
ok
3> calc:rpn("1 2 ^ 2 2 ^ 3 2 ^ 4 2 ^ sum 2 -").
28.0
Where 28 is indeed equal to sum(1² + 2² + 3² + 4²) - 2. Try as many of them as you
wish.
One thing that could be done to make our calculator better would be to make sure it
raises badarith errors when it crashes because of unknown operators or values left on the stack,
rather than our current badmatch error. It would certainly make debugging easier for the user of the
calc module.

Parithy
Typewritten Text
Source : http://learnyousomeerlang.com/functionally-solving-problems

	REVERSE POLISH NOTATION CALCULATOR

