
REASONING ABOUT CORRECTNESS 
Although this book focuses primarily on the data side of computation, its study cannot truly be 
separated from the study of procedure. The next two chapters focus on two procedural concepts that 
are crucial to our study of data structures: reasoning about a procedure's correctness, and reasoning 
about a procedure's speed. 

3.1. Invariants 
For most of the algorithms we've seen thus far, their correctness has been fairly obvious, and we 
haven't needed to argue why each algorithm provided the correct answer. Some algorithms, though, 
are so clever that we really need a mathematical proof to be convinced that they work. One of the 
most useful tools for proving that something works is the notion of an invariant. 

An invariant is a condition that is preserved during the course of executing a program. Invariants are 
particularly useful for reasoning about loops, where the invariant is a condition that holds at the 
beginning of each iteration. As an example, consider the following simple method; it's obvious 
enough to require no proof of its correctness, but we do best to begin by examining a simple loop 
before progressing to less obvious examples. 

public static int maxArray(int[] data) { 

    int ret = data[0]; 

    for(int i = 1; i < data.length; i++) { 

        if(data[i] > ret) ret = data[i]; 

    } 

    return ret; 

} 

Here, the loop maintains an invariant that ret is the maximum of the first i elements of data, or 
more succinctly, 

ret = max0 ≤ j < i data[j]. 

To be an invariant for a loop, two properties should hold. (If you've studied mathematical proof 
techniques, you will recognize the similarity between these two properties and the two parts of a 
proof by induction (a basis step and a induction step).) 

· The invariant should be true when the computer first hits the while loop. In this case, at the 
beginning of the first iteration, i is 1, and the invariant asserts that ret would be the 
maximum considering only the first 1 element of data. Of course, the maximum among a set 



with just one number would be that number itself. Initialization of retto data[0] prior to 
entering the while loop ensures that the invariant holds prior to the first iteration. 

· At the beginning of each subsequent iteration, the invariant should hold assuming that it held 
at the beginning of the previous iteration. When we start an iteration in this example, the 
new i (call it i') will be one larger than the i of the previous iteration. We have two cases to 
consider. 

data[i] > ret: 

Since ret was the maximum of the first i elements at the iteration's start, and data[i] is 
larger than that, it must be that data[i] is the maximum of the first i + 1 = i' elements. 
Since ret will be data[i] after the iteration completes, the invariant will still hold then. 

data[i] ≤ ret: 

In this case, the program leaves ret unchanged. This is the proper thing to do because the 
maximum of the first i' = i + 1 elements is the same as the maximum of the first i elements. 

If we have a loop invariant (which by definition must satisfy these two properties), then we can infer 
that the invariant will still hold just after the loop terminates. Since i will bedata.length following 
the loop, the invariant implies that ret is the maximum value of the first data.length entries — 
that is, all entries — of the data array. 

Technically, the argument is missing something. We know that the loop ends when i is no 
longer less than data.length, but this doesn't imply that i will equaldata.length: It could 

be greater than data.length. To resolve this, we could add another fact to the invariant: that i is 
always less than or equal to data.length. This, coupled with the fact that i is no longer less 
than data.length after the loop completes, will imply that i must equal data.length. We must 
confirm that this additional assertion adheres to the two invariant properties: First, it is true when the 
computer first hits the while loop (i starts at 1, and data.length will be at least that); and second, 
since we know i is less than data.length at the beginning of each iteration, adding 1 to the integer 
value will not make it exceed data.length. 

A complete proof of correctness would also include some argument that the loop will eventually 
terminate. This is not a technicality that will concern us, though. 

Note that a single loop can have many valid invariants satisfying the two properties. For example, 
another invariant to the above loop is i ≥ 1: It holds in starting the first iteration (when i is 1), and in 
each subsequent iteration, i only increases. (Because of overflow considerations, a complete 
argument would depend on the fact that it stops once i reachesdata.length.) For that matter, 
1 + 1 = 2 is another invariant, as it is something that is true at the beginning of each iteration; of 



course, this is an invariant for all loops, so it's hardly an interesting one. Because there are many 
possible invariants for a loop, to refer to the invariant for a loop is technically invalid. 

Despite such intricacies, we nonetheless talk about the invariant for a loop. When we do, we are 
talking about the invariant that encapsulates the important information about what the loop does. In 
the case of our code for computing the maximum, the first invariant we examined would be this 
invariant. In short, if you're asked to identify the invariant for a loop, you shouldn't expect anybody 
to be impressed (or, on a test, to give you any credit) for responding, 1 + 1 = 2. 

3.1.1. Case study: Searching an array 

Onward to more interesting examples. Consider the problem of determining where within an array of 
numbers a particular value lies. Our method should return the index of the value, or −1 if the 
requested value doesn't appear at all in the array. For example, suppose we have the following array. 

 

Given a request to find 5, we want to respond with 2, the index within the array where 5 can be 
found. 

The simple solution, called sequential search, simply starts at the beginning of the array and searches 
forward until the number is found. If the method reaches the end of the array, it returns −1. 

public static int sequentialSearch(int[] data, int value) { 

    for(int i = 0; i < data.length; i++) { 

        if(data[i] == value) return i; 

    } 

    return -1; 

} 

Here, the invariant to the loop is that value does not appear in the first i elements of the array data. 
This is trivially true at the beginning, when i is 0, so the invariant satisfies the first required property. 
For the second property, assuming that the invariant holds at the beginning of one iteration means 
assuming that value is not among the first i elements. We will reach the next iteration only 
if data[i] — that is, the (i + 1)st value of i — is also not value. Thus, at the beginning of the next 
iteration, even though i has gone up by one, value is still not among the first i elements — and the 
invariant still holds. 

That invariant was not a difficult example. Notice how it is similar to the invariant of maxArray: In 
both cases, the loop has an index (i) that iterates through subsequent integers, and the invariant 



simply gives information about the cumulative job that the algorithm has completed thus far. Our 
next example, though, does not follow this model as closely. 

Suppose that we want to search an array that we already know is in increasing order. While we could 
use the sequential search algorithm, the binary search algorithm is a more efficient way to solve the 
problem. In this algorithm, we keep track of a range of indices (marked by a and c in our program) 
where value could lie. With each iteration, we take the midpoint of the interval, see how the value 
in data at that index compares to value, and discard either the lower half or the upper half based on 
the result. 

It's a simple idea, but the binary search algorithm is notoriously difficult to program. Computer 
scientist Jon Bentley taught programming seminars to many professionals, and he regularly began by 
giving the participants half an hour to write the binary search algorithm on paper. He found that, after 
giving the assignment to over a hundred programmers, about 90% of participants discovered a 
mistake in their logic while participating in his seminar (Jon Bentley, Programming Pearls, Addison-
Wesley, 1986, 36). (He was relying on their own reports — he didn't check the other 10% himself.) 
In another study, Donald Knuth surveyed a broad range of early computing literature and found six 
different versions published between 1946 and 1958; but he found that the first correct binary search 
code was not published until 1962 (Donald Knuth, The Art of Computer Programming, vol. 3, 
Addison-Wesley, 1973, 419). Here's a version written in Java. 

// precondition: data array must be in increasing order 

public static int binarySearch(int[] data, int value) { 

    int a = 0; 

    int c = data.length - 1; 

    while(a != c) { 

        int b = (a + c) / 2; 

        if(data[b] >= value) c = b; 

        else                 a = b + 1; 

    } 

    if(data[a] == value) return a; 

    else                 return -1; 

} 

Given the difficulty that others have had writing the program, though, you shouldn't trust this code 
without a proof. And for that, we need an invariant. Ours will have two parts, which we label (a) and 
(b). 

· (a) For every index i where 0 ≤ i < a, data[i] is less than value; and 
· (b) for every index i where c ≤ i < data.length, data[i] is at least value. 



For this to be correct, it needs to satisfy the two properties of the invariant. 

The first property is that the invariant must hold when we first hit the loop. Clause (a) of the invariant 
holds trivially: In fact, since a starts at 0, there are no indices i where 0 ≤ i < a, so anything is true for 
all such indices. We hit a snag, though, when we look at clause (b). Since c starts 
at data.length − 1, there is an index i where c ≤ i < data.length— namely, c itself. And it could 
be that data[c] is less than value. So the invariant doesn't hold. 

Hmm. If this code works, the invariant will be something different. We'll shoehorn another clause in 
to force our candidate invariant to be true at the beginning. 

· (a) For every index i where 0 ≤ i < a, data[i] is less than value; and 
· either (b) for every index i where c ≤ i < data.length, data[i] is at least value, or (c) all 

values in data are less than value. 

As we reach the loop, data[c] will either be less than value, or it will be at least value. 
If data[c] is less than value, then all values in data are less than value (since data must come to 
us in increasing order), and clause (c) holds true. On the other hand, if data[c] is at least value, 
then clause (b) holds. In either case, the entire invariant now holds when we first reach the loop. 

Now to the second property of invariants. We'll suppose that the invariant holds at the beginning of 
the iteration; we want to show that it also holds for the values of a and cfollowing the iteration. We'll 
use a and c to represent the values of the variables' respective values previous to the iteration, and a' 
and c' to represent the values at the iteration's end. We have two cases to consider. 

data[b] ≥ value 

In this case, a' is the same as a, and so clause (a) of the invariant will still hold. Note that (c) 
has nothing to do with a or c, so that won't change either. But the truth value of (b) depends 
on c, so its truth value may change; we need to show that it won't. Since c' will 
be b, data[c'] will be at least value. The array is increasing, so all values indata following 
entry c' will be at least data[c'], which is itself at least value. Thus clause (b) holds, and 
from that follows the invariant. 

data[b] < value 

In this case, c' is the same as c, so the meaning of clauses (b) and (c) do not change. One of 
them held as the iteration started, and the same one will hold for the next iteration too. We 
have only to handle clause (a). Since a' is b, we know that data[a'] is less than value. 
Moreover, since the array is increasing, all values in data preceding entry a' must be at 



most data[a'], which itself is less than value. Thus clause (a) holds, and from that follows 
the invariant. 

With both properties proven, we have confirmed that our invariant is valid. 

Since the loop coninues as long as a != c, a and c will be equal once the loop completes. Since 
they'll be equal then, we can replace c by a in the invariant, and we'll get something that is true once 
the loop finishes: 

· (a) For every index i where 0 ≤ i < a, data[i] is less than value; and 
· either (b) for every index i where a ≤ i < data.length, data[i] is at least value, or (c) all 

values in data are less than value. 

We now want to know whether the method returns the proper value. For this, note that the invariant 
implies that either (b) or (c) holds. If (c) holds, then the correct return value is −1, and this is indeed 
what the method returns, since data[a] won't match value. The other possibility is that (b) holds. If 
the entry at a matches value, then returning a (as the method does) is of course correct. But 
suppose data[a] doesn't equal value. From (a), we know that nothing in data before 
index a matches value. We already know from (b) that data[a] must be greater than or equal 
to value, and since we're supposing it's not equal, it must be greater. Since the array is increasing, 
this means that all the values in dataafter index a are also greater than value. So value can't appear 
before index a, at index a, or after index a. None of the entries of data match value, and returning 
−1 is correct. 
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