
Programming via PHP More about forms 
 
10.1. Transmission methods 

HTTP, the transmission protocol used for the Web, actually defines two methods for 

sending form information to a Web server, called POST and GET. In Web forms, we've 

consistently used the POST method by including method="post" in the form tag. This is the 

recommended way for transmitting form data. 

The distinction between the two is this: With the GET transmission method, the 

information from the form is encoded into the URL that is sent to the Web server. This 

technique has the shortcoming that the URL will become unmanageably long for moderately 

long forms. The HTTP designers thus quickly found that a better design would be to have 

Web browsers send the form data after sending the URL to the Web server. 

The GET method, though, is still sometimes useful, particularly when you want to be able to 

access a PHP script through the use of a Web link rather than through completing a form. 

It's easiest to describe this through an example based on our forum site: When we list the 

name of each post's user, we might want to allow the user to click on the name to view the 

full information about that person. To do this, we'd want to generate the following HTML. 

<p>By: <a href="user.php?userid=sherlock">Sherlock Holmes</a></p>  

The GET method uses a question mark to separate the name of the script from the form 

data; following the question mark are field names and their associated values, separated by 

an equals sign. If there are multiple fields, each field/value pair is separated by an 

ampersand ('&'). 

Thus, when the user clicks on the link, the browser will send the URL to the Web server, 

which will invoke the user.php script as if the user had filled out a form 

typingsherlock into the userid field. The user.php script that we saw earlier will work as it 

has already been written. 

(In fact, the values sent via the GET and POST methods are accessible separately by PHP. 

But in invoking import_request_variables, we've consistently passed "pg" as the first 

parameter. The p says to import the POST values, and the g says to import the GET values. 

So for our purposes, both sets of values are imported together.) 

 

http://www.toves.org/books/php/index.html


 
 
10.2. Input elements 

We've already seen the input element, and in particular we've used 

the text and submit values for its type attribute, in order to create text fields and buttons. 

But we often want to create other types of input elements. In this section we'll look at some 

of the other possible values for type. 

10.2.1. Hidden fields 

One important value for type is hidden. Given this, a Web browser will not display anything 

about that input element on the screen. This may sound useless at first, since the user won't 

be able to interact with it, but it is actually one of the more useful options. It is used in 

situations where the HTML composer wants to send information into a script without 

showing it to the user. 

The hidden type is really only useful when it is associated with a value attribute in addition 

to the name attribute. Whatever is in this value attribute will be sent to the PHP script 

without giving the user a chance to see or modify it. 

Of course, the hidden type shouldn't be used when you have information that the user 

shouldn't ever see. While the element won't be rendered inside an HTML browser, the user 

who chooses to read the raw HTML source code will be able to see everything that appears. 

10.2.2. Password fields 

Another useful type is password. This works exactly like a text field, but it directly the Web 

browser to not display whatever the user types in the text field. Most Web browsers choose 

to display asterisks ('*') for each character the user types. 

The password field doesn't provide any security beyond preventing getting the information 

by somebody looking over the user's shoulder. Of course, somebody looking over the user's 

keyboard might be able to figure out the information by watching the user's fingers. 

10.2.3. Checkboxes 

A checkbox is a box that can be checked or unchecked to represent a yes/no value. The 

checkbox's value is sent to the PHP script only when it is checked. If the checkbox is not 



checked, then the browser won't send any information about it, and so 

the import_request_variables function won't create a variable. 

This brings up a question: How in a PHP script can we identify whether a variable exists or 

not? The answer lies in the isset function, which returns a Boolean value. Thus, you can 

write if(isset($form_box))… to test whether the checkbox named box was checked. 

An input element representing a checkbox should always contain a value attribute so that 

the Web browser will know what value to send when the checkbox is checked. 

This value attribute does not affect whether the checkbox is checked: That is done by 

setting the checked attribute to checked; checkboxes ar unchecked when 

no checked attribute is mentioned. 

Another issue that comes with checkboxes is that people normally expect that you can click 

anywhere on the label associated with the checkbox to toggle its value. However, the HTML 

we have seen thus far provides no way of indicating what the label is, so the Web browser 

cannot provide this user interface. 

HTML provides a way of indicating the label through its label element. To use it, you 

enclose the input element along with its associated label within the same tag. (For cases 

where this is impossible because the label appears separately from the input element, you 

can use the for attribute whose value matches the name attribute of the 

matching input element.) 

<label><input type="checkbox" name="box" value="on" checked="checked" />  

  Do you understand checkboxes?</label>  

Not all Web browsers honor the label tag, but it doesn't hurt to include it for those Web 

browsers that do honor it. 

 Do you understand checkboxes? 

Incidentally, you can use the label tag for other elements, such as those with 

a type of text or password, but the case for doing this is less compelling than for 

checkboxes or radio buttons. 

Not all Web browsers honor the label tag, but it doesn't hurt to include it for those Web 

browsers that do honor it. 

10.2.4. Radio buttons 



Radio buttons present several options to the user, from which the user may select one. Most 

interfaces display a circle next to each option, filling in the circle that is currently selected. 

Creating a set of radio buttons in HTML is a matter of creating several input elements all 

with the type attribute of radio and the identical name attribute. 

<label><input type="radio" name="station" value="fm899" />  

  FM 89.9 KQED</label>  

<br /><label><input type="radio" name="station" value="fm917" checked="checke

d" />  

  FM 91.7 KUAR</label>  

 FM 89.9 KQED  

 FM 91.7 KUAR 
 

10.3. Other form elements 

10.3.1. Text areas 

HTML specifies some form elements that are created through tags other than the input tag. 

One in the text area, typically a large text field with many rows: The way to create one of 

these is through a textarea element. 

The textarea element has three official attributes that are typically used. The name attribute 

works just as for the input element: It identifies the name associated with the text area's 

contents when the form is submitted to the Web server. There are also the rows and 

the cols attributes, which provide guidance to the Web browser about how tall and how 

wide to make the text area; but the browser should provide scrollbars when the text 

becomes taller or wider than the area that is displayed on the screen. 

Unlike the input element, which should not contain any text within it, 

the textarea element can. Whatever appears within the element should appear as the initial 

value within the textarea (as you would do using the value attribute for an input element 

corresponding to a text field). 

In fact, we should have used the textarea element in the Web form for allowing a user to 

post information to our forum Web site. The following allows users to use multiple words. 

<form method="post" action="post.php">  

<p>Name: <input type="text" name="user" />  

<br />Password: <input type="password" name="passwd" />  



<br />Subject: <input type="text" name="subj" />  

<br /><textarea name="body" rows="8" cols="80">Type your post here.</textarea

>  

<br /><input type="submit" value="Post" />  

</p></form>  

Name:   

Password:   

Subject:   

  

Post
 

10.3.2. Lists 

A final thing you might want is to present a list of options from which the user might 

choose. This can be done using the select element, within which is nested 

anoption elements for each option to appear. The select element has a name attribute 

giving the name for the browser to use when identifying the selection when the form is 

submitted. The option element has a value attribute for specifying what value to send when 

that option is selected; and it has a selected attribute which allows the HTML to specify 

which option is initially selected. 

Language: <select name="language">  

<option value="php" selected="selected">PHP</option>  

<option value="perl">Perl</option>  

<option value="python">Python</option>  

</select>  

HTML does not specify whether the browser should do this using a drop-down menu or a 

list, but most use drop-down menus. 

Language:    
PHP

 



There are two options available for configuring the select element's appearance: 

The size attribute configures how many rows to use if it is displayed as a list box, and 

the multiple attribute, when set to multiple, tells the browser to allow the user to select 

multiple options. Most browsers wil display the select element as a list box when either is 

indicated. The below select element is defined identically to the above example, except 

that size="3" has been added into the select tag. 

Language:    

PHP

Perl

Python  
 

 

 

 

Source: http://www.toves.org/books/php/ch10-moreforms/index.html 


