

IF A SUBROUTINE IS A BLACK BOX, then a parameter is something that provides

a mechanism for passing information from the outside world into the box. Parameters

are part of the interface of a subroutine. They allow you to customize the behavior of

a subroutine to adapt it to a particular situation.

As an analogy, consider a thermostat -- a black box whose task it is to keep your

house at a certain temperature. The thermostat has a parameter, namely the dial that is

used to set the desired temperature. The thermostat always performs the same task:

maintaining a constant temperature. However, the exact task that it performs -- that

is, which temperature it maintains -- is customized by the setting on its dial.

4.3.1 Using Parameters

As an example, let's go back to the "3N+1" problem that was discussed

in Subsection 3.2.2. (Recall that a 3N+1 sequence is computed according to the rule, "if

N is odd, multiply it by 3 and add 1; if N is even, divide it by 2; continue until N is

equal to 1." For example, starting from N=3 we get the sequence: 3, 10, 5, 16, 8, 4, 2,

1.) Suppose that we want to write a subroutine to print out such sequences. The

subroutine will always perform the same task: Print out a 3N+1 sequence. But the

exact sequence it prints out depends on the starting value of N. So, the starting value

of N would be a parameter to the subroutine. The subroutine could be written like this:

/**

 * This subroutine prints a 3N+1 sequence to standard output,

using

http://math.hws.edu/javanotes/c3/s2.html#control.2.2

 * startingValue as the initial value of N. It also prints the

number

 * of terms in the sequence. The value of the parameter,

startingValue,

 * must be a positive integer.

 */

static void print3NSequence(int startingValue) {

 int N; // One of the terms in the sequence.

 int count; // The number of terms.

 N = startingValue; // The first term is whatever value

 // is passed to the subroutine as

 // a parameter.

 count = 1; // We have one term, the starting value, so far.

 System.out.println("The 3N+1 sequence starting from " + N);

 System.out.println();

 System.out.println(N); // print initial term of sequence

 while (N > 1) {

 if (N % 2 == 1) // is N odd?

 N = 3 * N + 1;

 else

 N = N / 2;

 count++; // count this term

 System.out.println(N); // print this term

 }

 System.out.println();

 System.out.println("There were " + count + " terms in the

sequence.");

} // end print3NSequence

The parameter list of this subroutine, "(int startingValue)", specifies that the

subroutine has one parameter, of type int. Within the body of the subroutine, the

parameter name can be used in the same way as a variable name. However, the

parameter gets its initial value from outside the subroutine. When the subroutine is

called, a value must be provided for this parameter in the subroutine call statement.

This value will be assigned to the parameter startingValue before the body of

the subroutine is executed. For example, the subroutine could be called using the

subroutine call statement "print3NSequence(17);". When the computer

executes this statement, the computer first assigns the value 17

to startingValue and then executes the statements in the subroutine. This prints

the 3N+1 sequence starting from 17. If K is a variable of type int, then when the

computer executes the subroutine call statement "print3NSequence(K);", it will

take the value of the variable K, assign that value to startingValue, and execute

the body of the subroutine.

The class that contains print3NSequence can contain a main() routine (or other

subroutines) that call print3NSequence. For example, here is a main() program

that prints out 3N+1 sequences for various starting values specified by the user:

public static void main(String[] args) {

 System.out.println("This program will print out 3N+1

sequences");

 System.out.println("for starting values that you specify.");

 System.out.println();

 int K; // Input from user; loop ends when K < 0.

 do {

 System.out.println("Enter a starting value.");

 System.out.print("To end the program, enter 0: ");

 K = TextIO.getInt(); // Get starting value from user.

 if (K > 0) // Print sequence, but only if K is > 0.

 print3NSequence(K);

 } while (K > 0); // Continue only if K > 0.

} // end main

Remember that before you can use this program, the definitions of main and

of print3NSequence must both be wrapped inside a class definition.

4.3.2 Formal and Actual Parameters

Note that the term "parameter" is used to refer to two different, but related, concepts.

There are parameters that are used in the definitions of subroutines, such

as startingValue in the above example. And there are parameters that are used in

subroutine call statements, such as the K in the statement

"print3NSequence(K);". Parameters in a subroutine definition are called formal

parameters or dummy parameters. The parameters that are passed to a subroutine

when it is called are called actual parameters or arguments. When a subroutine is

called, the actual parameters in the subroutine call statement are evaluated and the

values are assigned to the formal parameters in the subroutine's definition. Then the

body of the subroutine is executed.

A formal parameter must be a name, that is, a simple identifier. A formal parameter is

very much like a variable, and -- like a variable -- it has a specified type such

as int, boolean, or String. An actual parameter is a value, and so it can be specified by

any expression, provided that the expression computes a value of the correct type. The

type of the actual parameter must be one that could legally be assigned to the formal

parameter with an assignment statement. For example, if the formal parameter is of

type double, then it would be legal to pass an int as the actual parameter since ints can

legally be assigned to doubles. When you call a subroutine, you must provide one

actual parameter for each formal parameter in the subroutine's definition. Consider,

for example, a subroutine

static void doTask(int N, double x, boolean test) {

 // statements to perform the task go here

}

This subroutine might be called with the statement

doTask(17, Math.sqrt(z+1), z >= 10);

When the computer executes this statement, it has essentially the same effect as the

block of statements:

{

 int N; // Allocate memory locations for the formal

parameters.

 double x;

 boolean test;

 N = 17; // Assign 17 to the first formal

parameter, N.

 x = Math.sqrt(z+1); // Compute Math.sqrt(z+1), and assign it

to

 // the second formal parameter, x.

 test = (z >= 10); // Evaluate "z >= 10" and assign the

resulting

 // true/false value to the third

formal

 // parameter, test.

 // statements to perform the task go here

}

(There are a few technical differences between this and

"doTask(17,Math.sqrt(z+1),z>=10);" -- besides the amount of typing --

because of questions about scope of variables and what happens when several

variables or parameters have the same name.)

Beginning programming students often find parameters to be surprisingly confusing.

Calling a subroutine that already exists is not a problem -- the idea of providing

information to the subroutine in a parameter is clear enough. Writing the subroutine

definition is another matter. A common beginner's mistake is to assign values to the

formal parameters at the beginning of the subroutine, or to ask the user to input their

values.This represents a fundamental misunderstanding. When the statements in

the subroutine are executed, the formal parameters have already been assigned initial

values! The values come from the subroutine call statement. Remember that a

subroutine is not independent. It is called by some other routine, and it is the calling

routine's responsibility to provide appropriate values for the parameters.

4.3.3 Overloading

In order to call a subroutine legally, you need to know its name, you need to know

how many formal parameters it has, and you need to know the type of each parameter.

This information is called the subroutine's signature. The signature of the

subroutine doTask, used as an example above, can be expressed

as: doTask(int,double,boolean). Note that the signature does not include

the names of the parameters; in fact, if you just want to use the subroutine, you don't

even need to know what the formal parameter names are, so the names are not part of

the interface.

Java is somewhat unusual in that it allows two different subroutines in the same class

to have the same name, provided that their signatures are different. (The language

C++ on which Java is based also has this feature.) When this happens, we say that the

name of the subroutine is overloaded because it has several different meanings. The

computer doesn't get the subroutines mixed up. It can tell which one you want to call

by the number and types of the actual parameters that you provide in the subroutine

call statement. You have already seen overloading used with System.out. This object

includes many different methods named println, for example. These methods all

have different signatures, such as:

println(int) println(double)

println(String) println(char)

println(boolean) println()

The computer knows which of these subroutines you want to use based on the type of

the actual parameter that you provide. System.out.println(17) calls the

subroutine with signature println(int),

while System.out.println("Hello") calls the subroutine with

signature println(String). Of course all these different subroutines are

semantically related, which is why it is acceptable programming style to use the same

name for them all. But as far as the computer is concerned, printing out an int is very

different from printing out a String, which is different from printing out a boolean,

and so forth -- so that each of these operations requires a different method.

Note, by the way, that the signature does not include the subroutine's return type. It is

illegal to have two subroutines in the same class that have the same signature but that

have different return types. For example, it would be a syntax error for a class to

contain two methods defined as:

int getln() { ... }

double getln() { ... }

So it should be no surprise that in the TextIO class, the methods for reading different

types are not all named getln(). In a given class, there can only be one routine that

has the name getln and has no parameters. So, the input routines in TextIO are

distinguished by having different names, such

as getlnInt() and getlnDouble().

Java 5.0 introduced another complication: It is possible to have a single subroutine

that takes a variable number of actual parameters. You have already used subroutines

that do this -- the formatted output

routines System.out.printf and TextIO.putf. When you call these

subroutines, the number of parameters in the subroutine call can be arbitrarily large,

so it would be impossible to have different subroutines to handle each case.

Unfortunately, writing the definition of such a subroutine requires some knowledge of

arrays, which will not be covered until Chapter 7. When we get to that chapter, you'll

learn how to write subroutines with a variable number of parameters. For now, we

will ignore this complication.

http://math.hws.edu/javanotes/c7/index.html
Parithy
Typewritten Text

Parithy
Typewritten Text
Source : http://math.hws.edu/javanotes/c4/s3.html

	Parameters in Java
	4.3.1 Using Parameters
	4.3.2 Formal and Actual Parameters
	4.3.3 Overloading

