
OS - Memory Management 
Memory management is the functionality of an operating system which handles or manages primary memory. 
Memory management keeps track of each and every memory location either it is allocated to some process or it is 
free. It checks how much memory is to be allocated to processes. It decides which process will get memory at what 
time. It tracks whenever some memory gets freed or unallocated and correspondingly it updates the status. 

Memory management provides protection by using two registers, a base register and a limit register. The base 
register holds the smallest legal physical memory address and the limit register specifies the size of the range. For 
example, if the base register holds 300000 and the limit register is 1209000, then the program can legally access all 
addresses from 300000 through 411999. 

 

Instructions and data to memory addresses can be done in following ways 

 Compile time -- When it is known at compile time where the process will reside, compile time binding is used to 

generate the absolute code. 

 Load time -- When it is not known at compile time where the process will reside in memory, then the compiler 

generates re-locatable code. 

 Execution time -- If the process can be moved during its execution from one memory segment to another, then 

binding must be delayed to be done at run time 

Dynamic Loading 
In dynamic loading, a routine of a program is not loaded until it is called by the program. All routines are kept on disk 
in a re-locatable load format. The main program is loaded into memory and is executed. Other routines methods or 
modules are loaded on request. Dynamic loading makes better memory space utilization and unused routines are 
never loaded. 



Dynamic Linking 
Linking is the process of collecting and combining various modules of code and data into a executable file that can be 
loaded into memory and executed. Operating system can link system level libraries to a program. When it combines 
the libraries at load time, the linking is called static linking and when this linking is done at the time of execution, it is 
called as dynamic linking. 

In static linking, libraries linked at compile time, so program code size becomes bigger whereas in dynamic linking 
libraries linked at execution time so program code size remains smaller. 

Logical versus Physical Address Space 
An address generated by the CPU is a logical address whereas address actually available on memory unit is a 
physical address. Logical address is also known a Virtual address. 

Virtual and physical addresses are the same in compile-time and load-time address-binding schemes. Virtual and 
physical addresses differ in execution-time address-binding scheme. 

The set of all logical addresses generated by a program is referred to as a logical address space. The set of all 
physical addresses corresponding to these logical addresses is referred to as a physical address space. 

The run-time mapping from virtual to physical address is done by the memory management unit (MMU) which is a 
hardware device. MMU uses following mechanism to convert virtual address to physical address. 

 The value in the base register is added to every address generated by a user process which is treated as offset at the 
time it is sent to memory. For example, if the base register value is 10000, then an attempt by the user to use 
address location 100 will be dynamically reallocated to location 10100. 

 The user program deals with virtual addresses; it never sees the real physical addresses. 

Swapping 
Swapping is a mechanism in which a process can be swapped temporarily out of main memory to a backing store , 
and then brought back into memory for continued execution. 

Backing store is a usually a hard disk drive or any other secondary storage which fast in access and large enough to 
accommodate copies of all memory images for all users. It must be capable of providing direct access to these 
memory images. 

Major time consuming part of swapping is transfer time. Total transfer time is directly proportional to the amount of 
memory swapped. Let us assume that the user process is of size 100KB and the backing store is a standard hard 
disk with transfer rate of 1 MB per second. The actual transfer of the 100K process to or from memory will take 

100KB / 1000KB per second 

= 1/10 second 

= 100 milliseconds 



 

Memory Allocation 
Main memory usually has two partitions 

 Low Memory -- Operating system resides in this memory. 

 High Memory -- User processes then held in high memory. 

Operating system uses the following memory allocation mechanism. 

S.N. Memory Allocation Description 

1 Single-partition allocation 

In this type of allocation, relocation-register scheme is used to 

protect user processes from each other, and from changing 

operating-system code and data. Relocation register contains 

value of smallest physical address whereas limit register contains 

range of logical addresses. Each logical address must be less 

than the limit register. 

2 Multiple-partition allocation 

In this type of allocation, main memory is divided into a number of 

fixed-sized partitions where each partition should contain only 

one process. When a partition is free, a process is selected from 

the input queue and is loaded into the free partition. When the 

process terminates, the partition becomes available for another 

process. 



Fragmentation 
As processes are loaded and removed from memory, the free memory space is broken into little pieces. It happens 
after sometimes that processes can not be allocated to memory blocks considering their small size and memory 
blocks remains unused. This problem is known as Fragmentation. 

Fragmentation is of two types 

S.N. Fragmentation Description 

1 External fragmentation 
Total memory space is enough to satisfy a request or to reside a 

process in it, but it is not contiguous so it can not be used. 

2 Internal fragmentation 
Memory block assigned to process is bigger. Some portion of memory 

is left unused as it can not be used by another process. 

External fragmentation can be reduced by compaction or shuffle memory contents to place all free memory together 
in one large block. To make compaction feasible, relocation should be dynamic. 

Paging 
External fragmentation is avoided by using paging technique. Paging is a technique in which physical memory is 
broken into blocks of the same size called pages (size is power of 2, between 512 bytes and 8192 bytes). When a 
process is to be executed, it's corresponding pages are loaded into any available memory frames. 

Logical address space of a process can be non-contiguous and a process is allocated physical memory whenever the 
free memory frame is available. Operating system keeps track of all free frames. Operating system needs n free 
frames to run a program of size n pages. 

Address generated by CPU is divided into 

 Page number (p) -- page number is used as an index into a page table which contains base address of each page in 

physical memory. 

 Page offset (d) -- page offset is combined with base address to define the physical memory address. 



 

Following figure show the paging table architecture. 

 



Segmentation 
Segmentation is a technique to break memory into logical pieces where each piece represents a group of related 
information. For example ,data segments or code segment for each process, data segment for operating system and 
so on. Segmentation can be implemented using or without using paging. 

Unlike paging, segment are having varying sizes and thus eliminates internal fragmentation. External fragmentation 
still exists but to lesser extent. 

 

Address generated by CPU is divided into 

 Segment number (s) -- segment number is used as an index into a segment table which contains base address of 

each segment in physical memory and a limit of segment. 

 Segment offset (o) -- segment offset is first checked against limit and then is combined with base address to define 

the physical memory address. 



 

 

 

 

 

Source: 

http://www.tutorialspoint.com/operating_system/os_memory_management.htm 


