
Necessary and Sufficient Deadlock Conditions

Coffman (1971) identified four (4) conditions that must hold simultaneously for there

to be a deadlock.

1. Mutual Exclusion Condition
The resources involved are non-shareable.

Explanation: At least one resource (thread) must be held in a non-shareable mode,

that is, only one process at a time claims exclusive control of the resource. If another

process requests that resource, the requesting process must be delayed until the

resource has been released.

2. Hold and Wait Condition
Requesting process hold already, resources while waiting for requested

resources.

Explanation: There must exist a process that is holding a resource already allocated

to it while waiting for additional resource that are currently being held by other

processes.

3. No-Preemptive Condition
Resources already allocated to a process cannot be preempted.

Explanation: Resources cannot be removed from the processes are used to

completion or released voluntarily by the process holding it.

4. Circular Wait Condition
The processes in the system form a circular list or chain where each process in

the list is waiting for a resource held by the next process in the list.

As an example, consider the traffic deadlock in the following figure

Consider each section of the street as a resource.

1. Mutual exclusion condition applies, since only one vehicle can be on a section

of the street at a time.

2. Hold-and-wait condition applies, since each vehicle is occupying a section of

the street, and waiting to move on to the next section of the street.

3. No-preemptive condition applies, since a section of the street that is a section of

the street that is occupied by a vehicle cannot be taken away from it.

4. Circular wait condition applies, since each vehicle is waiting on the next

vehicle to move. That is, each vehicle in the traffic is waiting for a section of

street held by the next vehicle in the traffic.

The simple rule to avoid traffic deadlock is that a vehicle should only enter an

intersection if it is assured that it will not have to stop inside the intersection.

It is not possible to have a deadlock involving only one single process. The deadlock

involves a circular “hold-and-wait” condition between two or more processes, so

“one” process cannot hold a resource, yet be waiting for another resource that it is

holding. In addition, deadlock is not possible between two threads in a process,

because it is the process that holds resources, not the thread that is, each thread has

access to the resources held by the process.

Source:

http://www.personal.kent.edu/~rmuhamma/OpSystems/Myos/deadlockCondition.htm

