
A class can include other things besides subroutines. In particular, it can also

include variable declarations. Of course, you can declare variables inside subroutines.

Those are called local variables. However, you can also have variables that are not

part of any subroutine. To distinguish such variables from local variables, we call

them member variables, since they are members of a class.

Just as with subroutines, member variables can be either static or non-static. In this

chapter, we'll stick to static variables. A static member variable belongs to the class

itself, and it exists as long as the class exists. Memory is allocated for the variable

when the class is first loaded by the Java interpreter. Any assignment statement that

assigns a value to the variable changes the content of that memory, no matter where

that assignment statement is located in the program. Any time the variable is used in

an expression, the value is fetched from that same memory, no matter where the

expression is located in the program. This means that the value of a static member

variable can be set in one subroutine and used in another subroutine. Static member

variables are "shared" by all the static subroutines in the class. A local variable in a

subroutine, on the other hand, exists only while that subroutine is being executed, and

is completely inaccessible from outside that one subroutine.

The declaration of a member variable looks just like the declaration of a local variable

except for two things: The member variable is declared outside any subroutine

(although it still has to be inside a class), and the declaration can be marked with

modifiers such as static, public, and private. Since we are only working with

static member variables for now, every declaration of a member variable in this

chapter will include the modifier static. They might also be marked

as public or private. For example:

static String usersName;

public static int numberOfPlayers;

private static double velocity, time;

A static member variable that is not declared to be private can be accessed from

outside the class where it is defined, as well as inside. When it is used in some other

class, it must be referred to with a compound identifier of the form class-

name.variable-name. For example, the System class contains the public static

member variable named out, and you use this variable in your own classes by

referring toSystem.out. Similarly, Math.PI is a public member variable in

the Math whose value is the mathematical constant π. If numberOfPlayers is a

public static member variable in a class named Poker, then subroutines in

the Poker class would refer to it simply as numberOfPlayers, while subroutines

in another class would refer to it as Poker.numberOfPlayers.

As an example, let's add a static member variable to the GuessingGame class that

we wrote earlier in this section. This variable will be used to keep track of how many

games the user wins. We'll call the variablegamesWon and declare it with the

statement "static int gamesWon;". In the playGame() routine, we add 1

to gamesWon if the user wins the game. At the end of the main() routine, we print

out the value ofgamesWon. It would be impossible to do the same thing with a local

variable, since we need access to the same variable from both subroutines.

When you declare a local variable in a subroutine, you have to assign a value to that

variable before you can do anything with it. Member variables, on the other hand are

automatically initialized with a default value. For numeric variables, the default value

is zero. For boolean variables, the default is false. And for char variables, it's the

unprintable character that has Unicode code number zero. (For objects, such

asStrings, the default initial value is a special value called null, which we won't

encounter officially until later.)

Since it is of type int, the static member variable gamesWon automatically gets

assigned an initial value of zero. This happens to be the correct initial value for a

variable that is being used as a counter. You can, of course, assign a different value to

the variable at the beginning of the main() routine if you are not satisfied with the

default initial value.

Here's a revised version of GuessingGame.java that includes

the gamesWon variable. The changes from the above version are shown in red:

public class GuessingGame2 {

 static int gamesWon; // The number of games won by

 // the user.

 public static void main(String[] args) {

 gamesWon = 0; // This is actually redundant, since 0 is

 // the default initial

value.

 TextIO.putln("Let's play a game. I'll pick a number

between");

 TextIO.putln("1 and 100, and you try to guess it.");

 boolean playAgain;

 do {

 playGame(); // call subroutine to play one game

 TextIO.put("Would you like to play again? ");

 playAgain = TextIO.getlnBoolean();

 } while (playAgain);

 TextIO.putln();

 TextIO.putln("You won " + gamesWon + " games.");

 TextIO.putln("Thanks for playing. Goodbye.");

 } // end of main()

 static void playGame() {

 int computersNumber; // A random number picked by the

computer.

 int usersGuess; // A number entered by user as a

guess.

 int guessCount; // Number of guesses the user has

made.

 computersNumber = (int)(100 * Math.random()) + 1;

 // The value assigned to computersNumber is a

randomly

 // chosen integer between 1 and 100, inclusive.

 guessCount = 0;

 TextIO.putln();

 TextIO.put("What is your first guess? ");

 while (true) {

 usersGuess = TextIO.getInt(); // Get the user's guess.

 guessCount++;

 if (usersGuess == computersNumber) {

 TextIO.putln("You got it in " + guessCount

 + " guesses! My number was " +

computersNumber);

 gamesWon++; // Count this game by incrementing

gamesWon.

 break; // The game is over; the user has won.

 }

 if (guessCount == 6) {

 TextIO.putln("You didn't get the number in 6

guesses.");

 TextIO.putln("You lose. My number was " +

computersNumber);

 break; // The game is over; the user has lost.

 }

 // If we get to this point, the game continues.

 // Tell the user if the guess was too high or too low.

 if (usersGuess < computersNumber)

 TextIO.put("That's too low. Try again: ");

 else if (usersGuess > computersNumber)

 TextIO.put("That's too high. Try again: ");

 }

 TextIO.putln();

 } // end of playGame()

} // end of class GuessingGame2

Parithy
Typewritten Text
Source : http://math.hws.edu/javanotes/c4/s2.html

	Member Variables in java

