

MAIN.ALGORITHMS.OF.A.LINUX.KERNEL

Signals

 Signals are one of the oldest facilities of Inter Process Communication.

 Signals are used to inform the processes about the events.

 signals will be sent via the following function (by the Kernel)

int send_sig_info(int sig, struct siginfo *info, struct task_struct *);

sig – refers the signal number

info – refers the sender

t – refers to the tasks (the kernel may send signals to many processes)

Booting the System

There are many bootloaders available for linux, the common ones being the LILO and the
GRUB loader

LILO – LInux LOader

GRUB – GRand unified Bootloader

The steps while booting the kernel (only relevant steps are given)

 Entry point at start which is available at arch/x86/boot/setup.S (This is
responsible for initializing the hardware (assembler code)

 Once the hardware is initialized, the process is switched to protected mode by
setting a bit word in the machine status word.

 Next the assembler instruction, jmpi 0×100000 _KERNEL_CS, jumps to the start
address of the 32 bit code of the actual operating system kernel and continues from
startup_32 and in the file arch/x86/kernel/head.S . More sections of the
hardwares are initialized here like Memory Management unit (Page tables), the Co
processor, and the environment (stack, environment,etc)

 The first C function start_kernel() from init/main.c is called
 the following list the assembly linkage of the start_kernel function

asmlinkage void __init start_kernel(void)

{

char * command_line;

printk(linux_banner); //print kernel, the banner

setup_arch(&command_line);//architecture dependent codes relevant to x86

trap_init();

init_IRQ(); //hardware interrupt initialization

sched_init(); //initialize the schedules

time_init();

softirq_init(); //soft interrupts

console_init();//initialize the console

init_modules();//initialize the modules (device drivers)

…..}

 the init is called (will be searched in /sbin/init or /etc/init or /bin/init). if the init
is not available, then a shell (/bin/bash) will be opened for debugging

Hardware interrupts (IRQ)

Interrupts are used to allow the hardware to communicate with the operating system,
there are two problems while writing interrupt routine,

 firstly, The interrupt routines should serve the hardware as quickly as possible

 secondly, large amount is to be handled by the interrupt routine

This can be solved by the following mechanisms

 disabling all the software interrupts while servicing the hardware interrupts.
 the processing of data is carried out asynchronously by the software interrupts

through “tasklets ” or “bottom halves”

Software Interrupts

 It is like a hardware interrupt but can be started only at certain times
 The number of interrupts is limited
 enum {HI_SOFTIRQ, NET_TX_SOFTIRQ, NET_RX_SOFTIRQ,TASKLET_SOFTIRQ}; the

date types tells the software interrupts for hi priority software interrupts, Network
Tranmssion and Receiving Interrupt and tasklet interrupt). upon interrupt is
generated, the Interrupt routine will be executed

Timer Interrupts

 There is one hardware timer that generates interrupts every 10ms and all the
software timer synchronizes with it.

 Usually the timer stored in the variable jiffies.

unsigned long volatile jiffies;

The variable jiffies is modified by the timer interrupt every 10ms and hence it is declared
as volatile.

volatile struct timeval xtime:

This is the actual time which again modified by the timer interrupt

Other functions of timer interrupt like

do_timer();

updates the jiffies

timer_bh();

updates the timer and processing of the timer related functions

update_process_time();

collects data for the scheduler and decides whether it has to be scheduled.

 The Scheduler

schedule () is function declared in kernel/sched.c

The actions of the scheduler is given below, once the schedule() function is called,

 Upcoming software interrupts are processed (so interrupts are given higher priority
over the other entities in the system)

 process with highest priority determined (if two tasks has equal priority, then the
OS will determine which task to be executed first.)

 real time process takes over normal ones. (Real time processes area associated with
deadlines, whereas the normal ones doesn’t have deadlines, this factor is
determined by the rt_priority of the schedule structure)

 new process becomes current process. (whenever a process is getting scheduled by
the scheduler, then it will become the current process)

Parithy
Typewritten Text
Source : http://engineeringcourses.files.wordpress.com/2010/04/osp-lecture-notes1.pdf

