
In a Java GUI program, each GUI component in the interface is represented by an 

object in the program. One of the most fundamental types of component is 

the window. Windows have many behaviors. They can be opened and closed. They 

can be resized. They have "titles" that are displayed in the title bar above the window. 

And most important, they can contain other GUI components such as buttons and 

menus. 

Java, of course, has a built-in class to represent windows. There are actually several 

different types of window, but the most common type is represented by 

the JFrame class (which is included in the packagejavax.swing). A JFrame is an 

independent window that can, for example, act as the main window of an application. 

One of the most important things to understand is that a JFrame object comes with 

many of the behaviors of windows already programmed in. In particular, it comes 

with the basic properties shared by all windows, such as a titlebar and the ability to be 

opened and closed. Since a JFrame comes with these behaviors, you don't have to 

program them yourself! This is, of course, one of the central ideas of object-oriented 

programming. What a JFrame doesn't come with, of course, is content, the stuff that 

is contained in the window. If you don't add any other content to a JFrame, it will just 

display a blank area. You can add content either by creating a JFrame object and then 

adding the content to it or by creating a subclass of JFrame and adding the content in 

the constructor of that subclass. 

The main program above declares a variable, window, of type JFrame and sets it to 

refer to a new window object with the statement: 

JFrame window = new JFrame("GUI Test"); 



The parameter in the constructor, "GUI Test", specifies the title that will be displayed 

in the titlebar of the window. This line creates the window object, but the window 

itself is not yet visible on the screen. Before making the window visible, some of its 

properties are set with these statements: 

window.setContentPane(content); 

window.setSize(250,100); 

window.setLocation(100,100); 

The first line here sets the content of the window. (The content itself was created 

earlier in the main program.) The second line says that the window will be 250 pixels 

wide and 100 pixels high. The third line says that the upper left corner of the window 

will be 100 pixels over from the left edge of the screen and 100 pixels down from the 

top. Once all this has been set up, the window is actually made visible on the screen 

with the command: 

window.setVisible(true); 

It might look as if the program ends at that point, and, in fact, the main() routine 

does end. However, the window is still on the screen and the program as a whole does 

not end until the user clicks the OK button. Once the window was opened, a new 

thread was created to manage the graphical user interface, and that thread continues to 

run even after main() has finished. 

 

The content that is displayed in a JFrame is called its content pane. (In addition to its 

content pane, a JFrame can also have a menu bar, which is a separate thing that I will 

talk about later.) A basic JFramealready has a blank content pane; you can either add 

things to that pane or you can replace the basic content pane entirely. In my sample 

program, the line window.setContentPane(content) replaces the original 



blank content pane with a different component. (Remember that a "component" is just 

a visual element of a graphical user interface.) In this case, the new content is a 

component of type JPanel. 

JPanel is another of the fundamental classes in Swing. The basic JPanel is, again, just 

a blank rectangle. There are two ways to make a useful JPanel: The first is to add 

other components to the panel; the second is to draw something in the panel. Both 

of these techniques are illustrated in the sample program. In fact, you will find 

two JPanels in the program: content, which is used to contain other components, 

and displayPanel, which is used as a drawing surface. 

Let's look more closely at displayPanel. This variable is of 

type HelloWorldDisplay, which is a nested static class inside 

the HelloWorldGUI2 class. (Nested classes were introduced in Subsection 5.7.2.) This 

class defines just one instance method, paintComponent(), which overrides a 

method of the same name in the JPanel class: 

private static class HelloWorldDisplay extends JPanel { 

   public void paintComponent(Graphics g) { 

      super.paintComponent(g); 

      g.drawString( "Hello World!", 20, 30 ); 

   } 

} 

The paintComponent() method is called by the system when a component needs 

to be painted on the screen. In the JPanel class, the paintComponent method 

simply fills the panel with the panel's background color. 

The paintComponent() method in HelloWorldDisplay begins by 

calling super.paintComponent(g). This calls the version 

of paintComponent() that is defined in the superclass,JPanel; that is, it fills the 

http://math.hws.edu/javanotes/c5/s7.html#OOP.7.2


panel with the background color. (See Subsection 5.6.2 for a discussion of the special 

variable super.) Then it calls g.drawString() to paint the string "Hello World!" 

onto the panel. The net result is that whenever a HelloWorldDisplay is shown on the 

screen, it displays the string "Hello World!". 

We will often use JPanels in this way, as drawing surfaces. Usually, when we do this, 

we will define a nested class that is a subclass of JPanel and we will write 

a paintComponent method in that class to draw the desired content in the panel. 

 

http://math.hws.edu/javanotes/c5/s6.html#OOP.6.2
Parithy
Typewritten Text
Source : http://math.hws.edu/javanotes/c6/s1.html


	JFrame and JPanel



