INTRODUCTION TO SERVICE DATA CONCEPTS

A grid service is a stateful Web service. Because of this architecture model design fact, the
service data concept requires the OGSI to identify a common mechanism to expose the state data
of the service instance to the service requestor of the query, the update action itself, and finally
enable the change notification to occur. In this case, the OGSI utilized the "service data
declaration" as a mechanism for publicly expressing the available state information of a service.
This concept, however, is not limited to grid services.

The service data concept can be extended to any stateful Web service for declaring its publicly
available state information through the service data concepts. Therefore, developers that were
exposed to some of the more traditional distributed technologies, and their interface declaration
(IDL) approaches, will be familiar with this somewhat similar concept. Some of the object-
oriented distributed language interfaces use attributes declaration to indicate the exposed
state/properties of the services they describe.

The following describes the service data concepts introduced by the OGSI specification:

e Service data declaration (SDD) is a mechanism to expose a publicly available state of a
service.

o Service data elements (SDE) are accessible through the common grid service interfaces
("findServiceData" and "setServiceData").

o The internal state of a service should not be a part of the service data declaration.

Provided that we have now discussed the usability of service data, let us now explore the

concepts, semantics, and usage model of service data in the context of a grid service.



Service Data Structure

Service data is clearly modeled in the OGSI-defined namespace attribute.This new OGSI schema
type for service data ("sd:serviceData") contains seven predefined attributes, including name,
type, minOccurs, maxOccurs, modifiable, mutability, and nilable. Most of these attributes are
standard XSD types, with the exception of the "mutability" attribute. This is further defined by

nn

OGSI as an enumerated type, with values of "static," "constant," "extendable," and "mutable."
Note that this schema allows us to always add additional attributes of choice. There is another
notable, yet often underutilized feature in this instance provided by this type of definition. It is
the open content model related to content from any other namespace. This feature may be
utilized in the future to expose some policies or meta-data about the service data, including
security profiles.

This attribute set is extensible through the open attribute declaration of the schema's
SDE. Therefore, the service can add more semantic information about a service data through
attribute extensibility. An example of this extensibility is presented later with life cycle attributes
for a service data element.
Remembering the default values of these attributes will help us to understand and define a good
state management framework for grid services. Based on the SD definition, and as shown in the

above table, the required attributes for an SDE are "name" and "type" attributes and the service

developer is expected to provide them. The other attributes have default values assigned to them.



Table 6.1 lists these attributes of service data and their default values

SDE
Attributes

Mame

Type

maxlcours

inJCCUrs

hilakle

modifiable

mutability

Description and Default Values

This is a required attribute with a uniguely identifiable name of the service
data element in the target namespace.

This is the other required attribute, which defines the =ML schema type of
the service data value, the S0 value, The S0 value is based upaon this
schema and can be defined as simple or complex in a manner related o
#50 schema types, and/or one may define this in terms of other complex

twpes,

This indicates the maximum number of SDE values that can appear in the
service instance's SDE value set, or the portType staticServicebata
Yalues,

Default value = 1

This indicates the minimum number of SOE values that can appear in the
service instance's SDE value set or the portType staticServicebatavalues,
If minQccurs = 0, then this SDE is optional.

Default value = 1

This indicates whether an SO walue can have a nil wvalue, One can declare
this SDE as:

<zd:zgervicelata name="lifecycleModel"™

type="crm: lifecyoleModelType™ nillable="true"/ >

Another valid SDE walue is:

<zad: lifecycleModel xsd:inil="trues™ />.

Default value = false

This is a mechanism to specify a read-only and changeable service data
element. If changeable, you can use "setServiceData" operation to change
its SDE walue based on the other attribute {mutability, min, and mas)
constraints, This modifiable attribute is applicable to the service requestor
only. Internally a service can change its SDE walues if other constraints
are met,

Default value = false {all SDEs are by default "read only")

This is an indication of whether and how the values of a service data
element can change.



Table 6.2. Service data element mutability attributes

SDE
Mutability
Attribute
Yalue

Static

Constant

Extendahble

Mutable

Description of SDE Yalue

Analogous to a language
class member variable. All
portType declarations carry
this service data value.

This SDE wvalue is constant
and must not change,

Similar to the notion of
appending values, Once
added, these values remain
with the SDE, while new
values are appended,

The SDE wvalues can be
removed and others can be
added.

How to Define and Initialize This SDE
Yalue

Inside GWSDL portType using
<staticServiceDataYalues=. We can see
this example in the previous listing.

This SDE value is assigned on the
creation of grid service {runtime
behawvior),

Programmatically speaking, we can
append new SDE wvalues, The new values
are appended while the old ones remain,

Programmatically speaking, we can
change these SDE walues and add new
ones.

Types of Service Data Elements and Service Data Values

Every service instance has a collection of service data elements it exposes through public

interfaces. These service data elements can be classified into two types of attributes, based upon

the creation semantics. These are:

1. Static. Declared as part of the service's interface definition (GWSDL portType
definition).

2. Dynamic. Added to a service instance dynamically. This behavior is implementation
specific. The client may know the semantics (type and meaning) of the service data, or
can acquire that information from somewhere (service or third party) through meta-data
exchange.

For example, in order to process the dynamic SDE values, you may need to get the schema type

information for the SDE values from a remote location



Qualifying Service Data Element with Lifetime Attributes

In addition to the expressed features of the service data as previously discussed, there is also a
"hidden" concept in the specification with respect to the lifetime properties associated with the
service data elements. The concept is hidden because it is just a recommendation that the
service/client implementation could possibly ignore. However, good designs, programs, and
tools should be aware of this feature.

The service data element represents the real-time observations of the dynamic state of a service
instance. This real-time observation forces the clients to understand the validity and availability
of the state representation. That is, certain service data elements, especially within dynamic
SDEs, may have a limited lifetime. If there is lifetime information associated with the SDE, it
can help the client to make decisions on whether an SDE is available, has validity, and when it is
to revalidate the SDE. The most helpful development implementation of this concept may be the
client-side service data cache, and an associated revalidation mechanism.

Based on the preceding requirements, the specification provides three kinds of lifetime

properties:

e The time from which the contents of this element are valid (ogsi:goodFrom)
e The time until which the contents of this element are valid (ogsi:goodUntil)

e The time until which this element itself is available (ogsi:availableUntil)

The first two properties are related to the lifetime of the contents, while the third, the
availableUntil attribute, defines the availability of the element itself. For example, we may see a
dynamic SDE with availability until a specific time, and thereafter, it ceases to exist. This is a
good indication for the users of this specific service data element not to use that SDE after that
specified time.

According to the specification, these values are optional attributes of the SDE element and the
SDE values; however, it is always recommended to include the optional attributes in the XML

schema design of the types for the service data elements.

Source : http://elearningatria.files.wordpress.com/2013/10/ise-viii-grid-computing-06is845-notes. pdf


Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/ise-viii-grid-computing-06is845-notes.pdf




