
CS106B/X are taught using the C++ programming language, whereas our CS106A course uses
Java. Becoming exposed to another language is an excellent way to broaden your experience while
simultaneously preparing for the real world where much coding is done in C/C++.

Our first goal is thus to orient you in C++. Don't let this intimidate you— C++ is syntactically
similar to Java/C/C# and the core programming skills you've learned (decomposition, testing,
debugging, algorithm design, etc.) are quite transferable, no matter what language you've worked in.
Given the many small details and a few significant issues to cover, our first few lectures are focused
on developing your "C++ legs". Although C++ is a complex and full-featured language, we will
only incorporate those features that fit well with our pedagogical course goals, so no need to worry
about having to learn an entire second language.

This handout points out the Java/C++ differences most relevant to our course. These are just the
highlights and although we will skim these topics in lecture, plan on working through the first three
chapters of the reader on your own to get the full story with additional in-depth examples.

A little history
The C programming language originated around 1970 and was designed for professional
programmers writing tight low-level code. The language is known for its terseness, limited support
libraries, and runtime efficiency. It is known as an unsafe language because it makes tradeoffs that
value efficiency over safety (for example, access to array elements is not bounds-checked) and gives
the programmer unfettered access to do what they like (e.g. pointers and typecasts). C became quite
popular and even today is still one of the dominant languages in use. It is a good tool for an
experienced programmer, but not as appropriate for the rest of us mere mortals who could use some
safety goggles to go with our blowtorch.

C++ arrives on the scene in the 80s designed as “a better C”. It extends the C language with
features for data abstraction, extended facilities for user-defined types, a more extensive standard
library, and improved safety, while still maintaining an emphasis on efficient runtime performance.
The fact that C++ is a superset of C can be both a blessing (code compatibility) and a curse (unsafe
features still exist). We switched our CS106B and X courses to C++ in 2002 and by focusing on a
carefully chosen subset of features, we've been able to capitalize on the useful new functionality
C++ provides and move away from some of the more treacherous areas of C.

Java is a product of the 90s and had a meteoric rise to popularity; some of it due to the Internet
boom given Java was promoted for web development. Java takes much of its basic language syntax
and features from C and C++. However, philosophically, Java strikes out into new territory. It is
fundamentally object-oriented, cross-platform compatible, and has a huge standard library. Java
strongly values safety over efficiency and provides garbage-collection, array bounds-checking,
checked typecasts, and more. Java compilers are much more strict than C/C++ and close the
runtime safety loopholes present in C and C++. Java's combination of features makes it a good fit
with an intro course and we switched our CS106A course to Java in 2004.

All three of C, C++, and Java are widely used in industry and academia. We think it is valuable that
you are learning tools that you will continue using in upper-division classes and summer
internships and jobs. However, we also believe the programming skills we teach are not tied to the
language. By exposing you to two languages across the intro sequence (and a few others in CS107)
we're hoping to give you a solid foundation that transcends any one language or paradigm.

Parithy
Typewritten Text
Introduction to C++

2

What does C++ look like?
To start with, here is a complete C++ program that reads some numbers from the user and
computes their average.
/*
 * average.cpp
 * ------------
 * This program adds scores and prints their average.
 */

#include "genlib.h"
#include "simpio.h"
#include <iostream>

const int NumScores = 4;

double GetScoresAndAverage(int numScores);

int main()
{
 cout << "This program averages " << NumScores << " scores." << endl;
 double average = GetScoresAndAverage(NumScores);
 cout << "The average is " << average << "." << endl;
 return 0;
}

/*
 * Function: GetScoresAndAverage
 * Usage: avg = GetScoresAndAverage(10);
 * -------------------------------------
 * This function prompts the user for a set of values and returns
 * the average.
 */
double GetScoresAndAverage(int numScores)
{
 int sum = 0;
 for (int i = 0; i < numScores; i++) {
 cout << "Next score? ";
 int nextScore = GetInteger();
 sum += nextScore;
 }
 return double(sum)/numScores;
}

Familiar… but different, too.

Things that are mostly the same between C++ and Java
A quick glance at the program above might mistake it for Java, so that gives you some idea how
similar the basics are. In fact, enumerating all the features that are the same would be quite a long
list indeed! To give you an idea of some things you don't need to re-learn, consider these features
shared by Java and C++:

Both case-sensitive
Same use of punctuation (semicolons, curly braces, commas, parentheses, square brackets, …)
Same comment sequence (/* comment */, // comment)

3

Same primitive variable types (e.g. int, double, char …)
(although Java's boolean type is called bool in C++)

Same operators for arithmetic, comparison, logical (e.g. +, %, *=, ++, ==, <, &&, ||,…)
(same syntax, precedence, associativity, short-circuiting, conversions for mixed-types, etc.)

Same control structures (e.g. if/else, for, while, switch, return, break …)

All of the basic C++ language syntax is thoroughly covered in Chapter 1 of the reader. We highly
recommend that you carefully read this chapter and work through some of the review questions and
exercises to refresh your fundamental skills.

Compiler/language strictness
Both Java and C++ compilers are pretty assertive about making sure your code meets certain
standards (all variables declared, right number of parameters in calls, types used correctly, and so
on) but there are some areas where a C++ compiler is noticeably lax compared to what you're used
to in Java. Some of this is historical accident (improved compilers make possible better error-
checking) and some is by design (C++ being targeted at experienced programmers who are
assumed to not make mistakes and don't want to pay the costs for extra checks). Here are a few of
the pitfalls that you'll need to be on the lookout for yourself, since the compiler isn't much help on
these:

Forgetting to initialize a variable before you use it. In C++, trying to use the value of a variable that
hasn't been assigned will just get whatever junk contents it has. Yuck! Most C++ compilers will
produce a warning when you do this, but unlike Java, it is not a hard error. Depending on how
much you've been relying on the compiler to remind you, you'll probably need to bump up your
own attention to making sure variables are properly initialized.

Forgetting to return a value from a non-void method. C++ will allow you to "fall off the end" with
no return statement and will use a junk value for the function result. Double yuck! Again, some
C++ compilers will provide a warning, but not a hard error as you may have been reliant on from
Java.

Using a non-boolean expression where a boolean is expected. The original C language has no
explicit boolean type and it interprets any non-zero value as true, zero as false. C++ inherits this
from C. For example, in the test of an if or while statement, you can use any expression (boolean
or not). Combine this with the fact that an assignment statement returns a value and you have set the
stage for an insidious and all-too-common error in C/C++ programming:

 if (x = 3) // oops! meant == but used =
cout << "Ack!" << endl;

What does the above code do? It always prints Ack because it assigns x the value 3 and that value is
non-zero, so the test expression is true.

Programming paradigms
Different programming languages support different paradigms. Java is an example of a language in
the object-oriented paradigm. All Java code is written within the context of a class and classes form
the patterns from which you create objects that operate at runtime. When you execute Java code, it's
all about sending messages to objects. C++ supports the object-oriented paradigm, so it also allows
you to define classes, create objects, and send messages to them, but the language also supports the
procedural paradigm. In the procedural or imperative paradigm, you can define routines outside of
any class and execute code by a sequence of calls to such routines, without use of any objects or
classes. A C++ program can operate strictly in one or the other paradigm, but often make use of

4

both object-oriented and procedural features. C++ is termed a hybrid language, since it combines
more than one paradigm.

In this course, our approach to C++ is one that I call "procedural programming using objects".
Much of our code will be written in the procedural style, in the form of global functions that operate
sequentially but that code will use many objects (e.g. the standard string and stream classes, as well
as our own library classes). For the first half of the quarter, we will not be defining any new classes
at all. In the second half we will work on class implementation.

Filename extensions
Whereas Java source files are named with a .java extension (e.g. Binky.java), our C++ source
files are named with a .cpp extension (e.g. boggle.cpp). Other conventions for C++ source file
extensions include .C, .cc, and .cxx.

#include (Reader page 1-5)
In a C++ program, you must inform the compiler about features you are using from outside this
file. This is done with #include statements at the top of the file, such as

#include <iostream>
#include "genlib.h"

A #include is kind of like a Java import statement. A #include statement names a particular
interface file and directs the compiler to bring in that named interface so that its features are
accessible. For example, the first #include above is needed so you can access the I/O stream
library, the second is for the CS106 genlib interface. Angle brackets are used for standard library
interfaces, and quotes for our own interfaces. All our CS106 programs rely on in the genlib
interface and must always include it.

Alternate cast syntax (Reader page 1-18)
In Java, you saw the use of the typecast to convert between types, such as when converting an
integer to a floating-point value. C++ supports the same cast where the converted type is enclosed
in parentheses, but you will also see an alternate syntax that puts the parentheses around the value
being converted.

 val = (double)num; // Java-style cast
 val = double(num); // C++-style cast

Either form is acceptable in your programs but the textbook and lecture examples will tend to use
C++ style, so you should have at least reading familiarity with this form.

Functions and main (Reader pages 1-6 to 1-8 and pages 1-32 to 1-34)
In Java, all code is organized in methods, which must be defined within a class. In C++, it is
possible to define routines that exist outside any class context. These functions are like Java
methods in terms of return value, parameters, and so on, but a function does not operate on a
particular object and there is no object receiver when you call a function. Functions defined outside
a class are called global functions or free functions.

There is a global function main that every C++ program must have, analogous to the public
static void main method in the main class of a Java program. A C++ program starts executing
at the main function, steps through its code, and exits when main is done. The main function takes
no arguments and returns an integer, which reports whether the program was successful. By
convention, 0 means all is well and any non-zero return is an error code.

5

Here is a program showing main and two other functions.

void Binky(int num)
{

for (int i = 0; i < num; i++)
cout << "Hello!" << endl;

}

int Winky()
{

cout << "Enter your favorite number: ";
return GetInteger();

}

int main()
{ // execution starts here

int val = Winky();
Binky(val);
return 0; // and stops here

}

A few things to note
• When you call a global function there is no receiver (ie no xxx. before the function name). A

global function is not defined within a class and there is no object being operated on. There is
no "this" in context when the function is executing.

• The main function takes no parameters and returns an integer (usually 0).
• Functions must be declared before use. In the above code, both Binky and Winky are defined

before main which calls them. If you did want to define main first, you would need a forward
declaration of Binky and Winky to avoid a compiler error. A forward declaration is just the
function header (return type with parameters) ended by a semicolon, e.g.

void Binky(int num);
A forward declaration gives the compiler advance notice of a function to be defined later in the
file. This allows calls to that function to be properly checked for correctness even before the
full function has been seen. A forward declaration is also called a prototype.

• It's largely personal preference whether you list functions top-down (main followed by the
functions it calls), or bottom-up (starting with lower-level functions and working up to main).
However, a top-down listing requires separate prototypes since functions are called before
they are defined. The program flow can be easier to follow if organized top-down, but bottom-
up has the convenience of not maintaining separate prototypes. Either strategy is fine with us.

• Our naming convention is to capitalize function names, e.g. ReadFile or DrawHistogram.

Default arguments
One minor convenience supported in C++ is the concept of default arguments. Consider the string
member function find that searches a string for a given character. The function takes two
arguments: the character to look for and the starting index to search from. In most situations, the
starting index is zero (to search the entire string starting from the beginning) and it would be handy
if the client didn't have to always supply that zero. In C++, you can define the function with a
default argument, so the value could be assumed zero unless otherwise indicated. If the client calls
the function without specifying a second argument, the default value is used.

A default argument is added to the function prototype after the parameter name with an equal sign:

int find(char ch, int start = 0);

6

Only the lastmost argument(s) can be given default arguments (otherwise when a call was made
without all arguments, the compiler wouldn't know which ones were missing).

You call find with one or two arguments. If the second is not given, the default value is used.

str.find('c', 3);
str.find('c'); // uses 0 for second argument

Default arguments are merely a minor convenience. A similar effect can be achieved in Java with
several functions of the same name that have different argument lists (find that takes one
parameter, another find that takes two, etc.).

Reference parameters (Reader pages 1-34 to 1-38)
In Java, all parameters are passed by value. Passing by value means that a copy of the variable being
passed is made and inside the called function any changes to the parameter only affect the copy.

C++ has two different parameter passing mechanisms. The default is pass-by-value (like Java).
The other option is pass-by-reference which is indicated by adding & to the type of a parameter.
When a parameter is passed by reference, changes to the parameter do change the original. A
parameter passed by reference is not copied, instead a reference to the original variable is taken out,
and within the called function, the parameter becomes a synonym for the original. Any changes to
the parameter are reflected as changes to the original variable.

Consider the Adjust function that increments the first parameter by the amount of the second:

void Adjust(int & val, int delta) // val is ref param, delta is not
 {

 val += delta;
 }

Note that parameter val is passed by reference. Its value is updated within the body of Adjust and
we want that change to be visible in the calling function.

Given this call:

int x = 10;
Adjust(x, 5);

And after the function executes, x will now contain the value 15. 1

The difference between an integer parameter and an integer reference parameter can be a little
subtle. Any call to Adjust must supply two integer arguments. The first argument is pass-by-
reference and thus must be the name of a modifiable integer variable. In C++ speak, we call this an
lvalue, which is a fancy way of saying it can appear on the left hand side of an assignment
statement. The second argument can be any form of integer value (be it a constant, an expression
that evaluates to an integer, a double that can be truncated to an integer, an integer variable, and so

1An aside on simulated pass-by-reference: it is possible in C++ to get a pointer to a variable and explicitly pass that
pointer to a function that dereferences it to change the original variable. This is a way of simulating pass-by-reference and
this technique dates back to the C language, which doesn't contain references. What a reference parameter is doing behind
the scenes is basically the same thing but without dealing with the grungy * and & syntax and pointer pitfalls.

7

on). The restriction on what constitutes a valid integer reference makes sense if you think about it.
For example, consider this call:

Adjust(3+5, 4*5);

Although it is fine to pass an expression for the second argument, there is no sensible interpretation
for using an arithmetic expression as a reference for the first argument, thus this call produces is a
compile error.

A classic use of pass-by-reference is shown by this Swap function to exchange two values:

void Swap(double & a, double & b) // a, b are ref params
 {

 double tmp = a;
 a = b;
 b = tmp;
 }

When you call this function, you pass two variables to exchange:

double x = 1, y = 3.4;
Swap(x, y);

And after the function executes, x will have the value 3.4 and y 1. You cannot write such a Swap
function in Java because of its lack of reference parameters!

Even when the called function does not modify the parameter, a C++ programmer will often mark
any struct or object parameter as pass-by-reference. These items can be often large in size and
using pass-by-reference avoids the inefficiency of making copies of these large items as they are
passed around. As a habit, we will typically pass objects by reference for this reason of efficiency.

Constants (Reader pages 1-5 to 1-6)
The const type modifier is used when defining named constants. A constant is like declaring a
variable with a name and a type, and includes an initializer to set the value.

const int MaxEntries = 100;

The const modifier assures that once assigned, the value will not change; any attempt to modify a
constant will result in a compiler error.

Constants allow you to associate a name with a value and then use the name in place of the value for
purposes of readability and code maintenance. These are like the static final fields you used as
constants in Java. By convention, C++ constants are often named in uppercase.

const double PI = 3.141519;
const double TWO_PI = (PI*2);

Constants are usually listed at the top of the file, after the #include statements. These statements
are defined outside any class context. Similar to functions they exist globally— these constants are
accessible anywhere within the file once they have been defined.

The C++ const modifier has many other uses (parameters, member functions, etc.) but managing
those details is a topic we defer to CS107. In our course, we use const only for program-level
constants.

8

enum (Reader section 2.1)
The enum keyword is used to introduce a new type with a limited set of named values. For example,
the declaration below creates a new type for day of the week:

enum weekdayT {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

This declaration creates weekdayT as an enumerated type, with possible values ranging from Sun to
Sat. The type weekdayT can be used for variables, parameters, return types, and so on.

weekdayT day;

day = Sun;
if (day == Mon) ...

Behind the scenes, weekdayT is just a special kind of integer and each name is mapped to a value
(Sun is 0, Mon is 1, etc.) but using an enumerated type is less error-prone and more self-
documenting than that using integers with defined constants.

struct (Reader section 2.6)
The struct keyword is used to define a new type that is a collection of fields in one package.
Structures are used to group logically related data into one variable. For example, an inventory
program might track an item using a struct containing the name, price, and stock status:

struct itemT {
string name;
double price;
bool inStock;

};

This type declaration establishes itemT as a new record type containing three fields. This type can
be used for variables, parameters, return types, and so on.

itemT it;

it.name = "Hula hoop";
it.price = 25.99;
it.inStock = true;

The fields within a struct are accessed using dot notation. This notation should be familiar to you
from Java, which uses dot notation to access fields within an object. In fact, a struct is like an object,
where the fields are public to everyone and there are no methods to operate on it. Structs are most
appropriate when the data being managed has no behavior and there is no need for encapsulation.

Pointers (Reader section 2.3)
A pointer is just a special type of variable that stores a memory address. That address allows you to
access some other piece of data, called the pointee. You can then access the data to read and write by
reference through the pointer.

Pointers are one of the trickier features of C++. Even though Java doesn't let you explicitly
manipulate pointers, there are there just the same, so you have more experience with pointers than
you might think! In Java, all array and object variables are pointers, even though the syntax doesn't
make this apparent. When a Java program declares an array or object, space is allocated only for the
pointer. You must assign that pointer to hold the location of an object in the heap in order to use it.

9

C++ makes pointers much more explicit than Java. You indicate for each declaration whether a
variable is a pointer or not. All pointer variables are declared with an explicit * and you can have
pointers to any type. Consider the declarations below:

int x, y;
int *p, *q;

This declares x and y as integers and p and q as pointers to integers. As with any variable, you must
first initialize a pointer by assigning it a value. You can assign the pointer an address in one of four
ways:

1) using the result of a new call p = new int;
2) from another pointer variable q = p;
3) to NULL p = NULL: // C++ NULL is uppercase
4) to the location of an int p = &x;

To dereference a pointer to access its pointee, the * operator is used.

*p = 5; // assigns p's pointee value 5
*q = *p; // copies p's pointee value to q's pointee

You need to be diligent about your use of pointers in C++ because the language does not have the
same safety features as Java. For example, a Java compiler requires that you initialize a variable
before you use it. C++ will allow you to use the random contents. For an ordinary integer variable,
using a junk-valued integer might throw off your calculations, but trying to interpret the junk
contents as an address for a pointer variable usually has catastrophic, program-crashing results.

You can declare pointers to any type (including pointers to pointers!). Here is an example of a
pointer to the itemT struct from above:

itemT *ip;

ip = new itemT;
(*ip).name = "Yo-Yo"; // parens needed, . higher than *
ip->price = 9.95; // cleaner alternate for (*x).

The new and delete operators (Reader section 2.7)
C++'s new operator is basically the same as Java's. It is used for allocating variables in the heap and
returning a pointer to the allocated space. Here are some examples of calls to new:

double *p = new double;
int arr[] = new int[10];
itemT *ip = new itemT;
Binky *b = new Binky();

In C++, just as in Java, an unsuccessful new request throws an exception that halts execution.

On significant way in which dynamic memory differs in the two languages has to do with releasing
heap memory when no longer needed. Java provides automatic garbage collection, which means
that the system tracks use of heap memory and when it determines a variable is no longer in use, it
will automatically recycle it. C++ has no such facility, and it is responsibility of the programmer to
explicitly tell the system to delete a piece of memory that is no longer needed. Thus it is the
programmer's job to call delete to release unneeded memory previously allocated with new.

10

As a minor complication, there are two variants of delete, one with brackets and one without. The
special form delete[] is used to deallocate an array that was earlier allocated using new[] (i.e an
entire array allocated such as new int[num]). The basic rule is that every new call should be
balanced by exactly one delete call and similarly each new[] call is matched by a delete[] call.

Figuring out what and when to delete can be a difficult task, and getting it wrong can have
disastrous consequences. Typically you write the program first with no attempt to clean up memory
and then slowly and carefully add the necessary delete statements to clean up where appropriate.

Arrays (Reader section 2.4)
Java arrays and C++ arrays have fairly similar syntax, but operate somewhat differently
underneath. Below shows some C++ code for allocating and manipulating some arrays:

int arrOnStack[50];
int *arrInHeap;

arrInHeap = new int[50];

for (int i = 0; i < 50; i++) {
arrOnStack[i] = i;
arrInHeap[i] = arrOnStack[i] * 2;

}

delete[] arrInHeap;

Some things to note:
• A Java array declaration has the bracket next to the type, C++ has the brackets to the right side

of the variable name.
• Both Java and C++ arrays are indexed from 0 to numElements –1.
• C++ arrays do not do bounds-checking. If you attempt to access an element off either end, it

will have unpredictable results (rather than halt with an exception as Java would).
• C++ arrays do not know their length. You will need an additional variable to track the length

of a C++ array.
• C++ arrays can be declared on the stack or allocated with new in the heap (Java arrays can

only be allocated in the heap).

Classes (Reader section 8.1)
Defining a C++ class is similar to its Java equivalent, but there are a few differences to pick up.
One trivial note is that C++ programmers favor different vocabulary. C++ programmers typically
call an object's internal variables data members (Java calls them instance variables or fields) and the
routines that operate on an object are called member functions (Java calls these methods).

A Java class is defined in a single Classname.java file. In C++, the class definition is separated
into two files, the interface (also called the header or .h file) and the implementation (the .cpp file).
The interface file is defines the class "skeleton", listing the data members and the member functions
including types and access modifiers. The implementation file contains the code for the functions.

Although managing two files instead of one sounds like a burden, it allows for a nice division
between the two roles of client and implementer. The client of a class only needs to know the
available operations and doesn't need to know and shouldn't be bothered with how those operations
are implemented. The interface file doesn't contain those details and is the only file that the client
needs to see. The implementation file is intended only for the eyes of the implementer.

11

Here's a simple Location class for an x,y coordinate pair. It has two data members, a constructor,
and three member functions: two accessors and one modifier.

Here is the class declaration in location.h (by convention, the name of the file is lowercase):

class Location {

 public:
 Location(int xVal, int yVal); // ctor like Java

int getX();
int getY();

 void translate(int dx, int dy);

 private:
 int x, y;
}; // this ending semicolon is important!

A couple of things to point out right away:
• The members are grouped into public and private sections (as opposed to Java, where each

member is individually declared public or private). All data members should be private.
• The interface has no code for the member functions, code goes in the implementation file.
• There must be a semi-colon at the end of the class. Forgetting this is a really easy mistake to

make and it can be surprisingly hard to track down the compiler error that results.
• By convention, we typically capitalize the name of our classes. The names of members begin

with a lowercase letter and each subsequent word is capitalized.

The implementation file that goes with this interface contains the code to implement the member
functions. Here are the contents of location.cpp:

#include "location.h" //.cpp file includes its .h

Location::Location(int xVal, int yVal) {
x = xVal;
y = yVal;

}

int Location::getX() {
 return x;
}

int Location::getY() {
 return y;
}

void Location::translate(int dx, int dy) {
 x += dx;

y += dy;
}

Note that each member function is prefixed by Classname::. The double colon is the C++ scope
operator and it tells the compiler that you are providing the implementation for the function named
translate within the class named Location. If you forget the Location::, the compiler will
think you are defining a global function named translate, which is not what you wanted at all.
This mistake will produce error messages about undeclared variables x and y since global functions
have no "this" and there are no instance variables in scope.

12

Here is some client code that creates and uses two Location objects. The first Location object is
allocated on the stack, the second is dynamically allocated in the heap:

Location loc(10, 5);

loc.translate(9, -3);
cout << loc.getX() << ", " << loc.getY() << endl;

Location *lp = new Location(0, 0);
lp->translate(-10, 30);

A few things to note:

• In Java, objects are always dynamically allocated using new. In C++, you have the choice of
either allocating objects on the stack or dynamically in the heap using pointers. Typically, we
use the stack to allocate our objects, but occasionally will have reason to use the heap.

• You access the members of an object by selecting the field, just as you do with a struct, e.g.
loc.getX(). For an object accessed through a pointer, you will use ->.

The CS106 libraries
In CS106B/X, we have a few small libraries that are specifically designed for our course. In most
cases, these libraries offer tidier or more convenient ways of accomplishing tasks you could do
using the standard C++ libraries. The routines in the libraries list below are packaged as global
functions. You can call them from any context (as long as you have included the necessary interface
file) without an object receiver.

genlib.h This library must be included in all CS106 programs. It sets up base facilities
needed in our programs and provides the Error function will report an
unrecoverable error condition and halt.

simpio.h This library provides four simple functions to read data entered by the user
(GetInteger, GetLong, GetReal, and GetLine). You could directly read
from the standard C++ input stream, but these convenient routines handle the
error-checking and retry when the user enters an incorrect type. You can read
more about this library on reader page 1-14.

random.h This library has functions for generating different types of random events
(RandomInteger, RandomReal, and RandomChance). Behind the scenes, it
uses the standard C++ rand function. You can read all about our random
library in reader section 3.2.

strutils.h This library provides a smattering of handy string utility functions
(StringToInteger, ConvertToUppercase, and a few others). You can read
more details on reader pages 3-19 to 3-22.

graphics.h Our base graphics library has functions that set up a graphics window and
allow you to do rudimentary black-and-white line drawings. The graphics
model is a canvas on which you make persistent marks (this is different than
the paintComponent() style used in CS106A). Section 5.3 of the reader
discusses the simple graphics library.

extgraph.h The extended graphics library provides additional functions for color, text,
filled shapes, mouse handling, and more. The additional graphics features are
documented in our extgraph.h header file.

13

Strings (Reader section 3.3)
Just as in Java, there is a standard C++ class for managing a sequence of characters. The C++
string class is quite similar to Java's String class. Consider the C++ code below:

string s = "apple";
string t = "banana";

for (int i = 0; i < s.length(); i++)
cout << s[i]; // square brackets to access chars

t = s.substr(0, 3); // creates new substring

t[0] = 'm'; // C++ strings are mutable!
s = t + "binky"; // concat works for strings & chars

if (s == "Stanford")
s += "!";

int index = s.find("an");

A few things to note:
• These string objects are allocated on the stack and are not handled through pointers. We

access string fields using ordinary dot notation.
• The contents of a C++ string can be changed, such as by accessing a character location with []

and reassigning it or calling member functions insert and replace. (This is unlike Java strings
which are immutable).

• You compare C++ strings using the standard relational operators (==, <, >= , etc.). These
comparisons are case-sensitive.

• In C++, using + for string concatenation only works for adding strings and characters. If you
want to add integers or objects into a string, you must manually convert them to strings first.
(There are some handy conversion functions in our strutils library).

Input/output streams (Reader section 3.4)
Pretty much every programming language has a facility for input/output with similar functionality,
but each has their own particular design and syntax, which make them annoyingly different. Since
I/O tends to be one of messier, detail-oriented parts of a language, you could spend a lot of time
wading through arcana trying to completely master it. My general philosophy is to take the time up
front to be comfortable with the basics, but plan on looking up the more specialized details (how to
print with exactly two decimal places, how to read in a string of only lowercase letters, etc.) on a
need-to-know basis. This handout just skims the basics to get you started.

In Java, calls to System.out.print print things to the console. In C++, you use the insertion
operator << on the standard cout stream. The code below will print a string, a number, and a
newline to the console:

int x = 19;
cout << "hello" << x << endl; // endl prints a newline

In Java, you typically print multiple things by first concatenating them into one string and then
printing that string. In C++ you can chain together uses of << to print multiple things. There are
fancy ways of using stream manipulators to control the formatting of what is printed. Table 1-3 on
reader page 1-14 gives some of the more common manipulators.

14

To read from a C++ stream, you can use the extraction operation >>. The console input stream is
named cin. For example, the following code reads two integers from the console:

int x, y;
cin >> x >> y;

(I know << and >> can be easily confused. Here's a way to help keep it straight: The stream is
always on the far left and the arrows point in the direction of the information flow. If printing
information out to the stream, the arrows point from the variables to the stream. If reading
information in from the stream, the arrows point from the stream to the variables).

We will avoid using raw stream extraction on the console because it's tedious to handle the
inevitable user typing errors (such as entering a letter when a number was expected). Instead, use
our convenience functions in simpio.h that handle these details. For example, the code below shows
a typical way to interact with the user at the console:

cout << "What is your name?";
string name = GetLine();
cout << "How old are you?";
int age = GetInteger();
cout << "How much would you pay for this fabulous course?";
double price = GetReal();

Reading and writing to files (as opposed to the console) uses the same basic approach. You use the
classes ifstream and ofstream (input and output file streams) and the same insertion and
extraction operators. There are also facilities for reading char-by-char and line-by-line. Here is
some sample code that copies one file to another one line at a time:

#include <fstream>

int main() {
ifstream in;
ofstream out;

in.open("data.txt");
out.open("copy.txt");
if (in.fail() || out.fail()) Error("Can't open files.");

string line;
while (true) {
 getline(in, line);
 if (in.fail()) break; // no more lines to read
 out << line << endl;
}
in.close();
out.close();

}

You can read all about streams and file streams in reader section 3.4.
C gives the efficiency of assembly language with the ease of use of assembly language.

Parithy
Typewritten Text
Source: http://see.stanford.edu/materials/icspacs106b/H04-IntroToC.pdf

