
Inheritance

17.1. Inheritance

The language feature most often associated with object-oriented programming

is inheritance. Inheritance is the ability to define a new class that is a modified version of

an existing class.

The primary advantage of this feature is that you can add new methods to a class

without modifying the existing class. It is called inheritance because the new class

inherits all of the methods of the existing class. Extending this metaphor, the existing

class is sometimes called the parent class. The new class may be called the childclass or

sometimes subclass.

Inheritance is a powerful feature. Some programs that would be complicated without

inheritance can be written concisely and simply with it. Also, inheritance can facilitate

code reuse, since you can customize the behavior of parent classes without having to

modify them. In some cases, the inheritance structure reflects the natural structure of

the problem, which makes the program easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method is

invoked, it is sometimes not clear where to find its definition. The relevant code may be

scattered among several modules. Also, many of the things that can be done using

inheritance can be done as elegantly (or more so) without it. If the natural structure of

the problem does not lend itself to inheritance, this style of programming can do more

harm than good.

In this chapter we will demonstrate the use of inheritance as part of a program that plays

the card game Old Maid. One of our goals is to write code that could be reused to

implement other card games.

17.2. A hand of cards

For almost any card game, we need to represent a hand of cards. A hand is similar to a

deck, of course. Both are made up of a set of cards, and both require operations like

adding and removing cards. Also, we might like the ability to shuffle both decks and

hands.

A hand is also different from a deck. Depending on the game being played, we might

want to perform some operations on hands that don’t make sense for a deck. For

example, in poker we might classify a hand (straight, flush, etc.) or compare it with

another hand. In bridge, we might want to compute a score for a hand in order to make

a bid.

This situation suggests the use of inheritance. If Hand is a subclass of Deck, it will have

all the methods of Deck, and new methods can be added.

In the class definition, the name of the parent class appears in parentheses:

class Hand(Deck):

 pass

This statement indicates that the new Hand class inherits from the existing Deck class.

The Hand constructor initializes the attributes for the hand, which are name and cards.

The string name identifies this hand, probably by the name of the player that holds it.

The name is an optional parameter with the empty string as a default value. cards is the

list of cards in the hand, initialized to the empty list:

class Hand(Deck):

 def __init__(self, name=""):

 self.cards = []

 self.name = name

For just about any card game, it is necessary to add and remove cards from the deck.

Removing cards is already taken care of, since Hand inherits remove from Deck. But we

have to write add:

class Hand(Deck):

 ...

 def add(self,card):

 self.cards.append(card)

Again, the ellipsis indicates that we have omitted other methods. The

list append method adds the new card to the end of the list of cards.

17.3. Dealing cards

Now that we have a Hand class, we want to deal cards from the Deck into hands. It is not

immediately obvious whether this method should go in the Hand class or in

the Deckclass, but since it operates on a single deck and (possibly) several hands, it is

more natural to put it in Deck.

deal should be fairly general, since different games will have different requirements. We

may want to deal out the entire deck at once or add one card to each hand.

deal takes two parameters, a list (or tuple) of hands and the total number of cards to

deal. If there are not enough cards in the deck, the method deals out all of the cards and

stops:

class Deck :

 ...

 def deal(self, hands, num_cards=999):

 num_hands = len(hands)

 for i in range(num_cards):

 if self.is_empty(): break # break if out of cards

 card = self.pop() # take the top card

 hand = hands[i % num_hands] # whose turn is next?

 hand.add(card) # add the card to the hand

The second parameter, num_cards, is optional; the default is a large number, which

effectively means that all of the cards in the deck will get dealt.

The loop variable i goes from 0 to nCards-1. Each time through the loop, a card is

removed from the deck using the list method pop, which removes and returns the last

item in the list.

The modulus operator (%) allows us to deal cards in a round robin (one card at a time to

each hand). When i is equal to the number of hands in the list, the

expression i %nHands wraps around to the beginning of the list (index 0).

17.4. Printing a Hand

To print the contents of a hand, we can take advantage of

the printDeck and __str__ methods inherited from Deck. For example:

>>> deck = Deck()

>>> deck.shuffle()

>>> hand = Hand("frank")

>>> deck.deal([hand], 5)

>>> print hand

Hand frank contains

2 of Spades

 3 of Spades

 4 of Spades

 Ace of Hearts

 9 of Clubs

It’s not a great hand, but it has the makings of a straight flush.

Although it is convenient to inherit the existing methods, there is additional information

in a Hand object we might want to include when we print one. To do that, we can

provide a __str__ method in the Hand class that overrides the one in the Deck class:

class Hand(Deck)

 ...

 def __str__(self):

 s = "Hand " + self.name

 if self.is_empty():

 s = s + " is empty\n"

 else:

 s = s + " contains\n"

 return s + Deck.__str__(self)

Initially, s is a string that identifies the hand. If the hand is empty, the program appends

the words is empty and returns s.

Otherwise, the program appends the word contains and the string representation of

the Deck, computed by invoking the __str__ method in the Deck class on self.

It may seem odd to send self, which refers to the current Hand, to a Deck method, until

you remember that a Hand is a kind of Deck. Hand objects can do

everything Deckobjects can, so it is legal to send a Hand to a Deck method.

In general, it is always legal to use an instance of a subclass in place of an instance of a

parent class.

17.5. The CardGame class

The CardGame class takes care of some basic chores common to all games, such as

creating the deck and shuffling it:

class CardGame:

 def __init__(self):

 self.deck = Deck()

 self.deck.shuffle()

This is the first case we have seen where the initialization method performs a significant

computation, beyond initializing attributes.

To implement specific games, we can inherit from CardGame and add features for the

new game. As an example, we’ll write a simulation of Old Maid.

The object of Old Maid is to get rid of cards in your hand. You do this by matching cards

by rank and color. For example, the 4 of Clubs matches the 4 of Spades since both suits

are black. The Jack of Hearts matches the Jack of Diamonds since both are red.

To begin the game, the Queen of Clubs is removed from the deck so that the Queen of

Spades has no match. The fifty-one remaining cards are dealt to the players in a round

robin. After the deal, all players match and discard as many cards as possible.

When no more matches can be made, play begins. In turn, each player picks a card

(without looking) from the closest neighbor to the left who still has cards. If the chosen

card matches a card in the player’s hand, the pair is removed. Otherwise, the card is

added to the player’s hand. Eventually all possible matches are made, leaving only the

Queen of Spades in the loser’s hand.

In our computer simulation of the game, the computer plays all hands. Unfortunately,

some nuances of the real game are lost. In a real game, the player with the Old Maid

goes to some effort to get their neighbor to pick that card, by displaying it a little more

prominently, or perhaps failing to display it more prominently, or even failing to fail to

display that card more prominently. The computer simply picks a neighbor’s card at

random.

17.6. OldMaidHand class

A hand for playing Old Maid requires some abilities beyond the general abilities of

a Hand. We will define a new class, OldMaidHand, that inherits from Hand and provides

an additional method called remove_matches:

class OldMaidHand(Hand):

 def remove_matches(self):

 count = 0

 original_cards = self.cards[:]

 for card in original_cards:

 match = Card(3 - card.suit, card.rank)

 if match in self.cards:

 self.cards.remove(card)

 self.cards.remove(match)

 print "Hand %s: %s matches %s" % (self.name, card, match)

 count = count + 1

 return count

We start by making a copy of the list of cards, so that we can traverse the copy while

removing cards from the original. Since self.cards is modified in the loop, we don’t want

to use it to control the traversal. Python can get quite confused if it is traversing a list

that is changing!

For each card in the hand, we figure out what the matching card is and go looking for it.

The match card has the same rank and the other suit of the same color. The

expression 3 - card.suit turns a Club (suit 0) into a Spade (suit 3) and a Diamond (suit 1)

into a Heart (suit 2). You should satisfy yourself that the opposite operations also work.

If the match card is also in the hand, both cards are removed.

The following example demonstrates how to use remove_matches:

>>> game = CardGame()

>>> hand = OldMaidHand("frank")

>>> game.deck.deal([hand], 13)

>>> print hand

Hand frank contains

Ace of Spades

 2 of Diamonds

 7 of Spades

 8 of Clubs

 6 of Hearts

 8 of Spades

 7 of Clubs

 Queen of Clubs

 7 of Diamonds

 5 of Clubs

 Jack of Diamonds

 10 of Diamonds

 10 of Hearts

>>> hand.remove_matches()

Hand frank: 7 of Spades matches 7 of Clubs

Hand frank: 8 of Spades matches 8 of Clubs

Hand frank: 10 of Diamonds matches 10 of Hearts

>>> print hand

Hand frank contains

Ace of Spades

 2 of Diamonds

 6 of Hearts

 Queen of Clubs

 7 of Diamonds

 5 of Clubs

 Jack of Diamonds

Notice that there is no __init__ method for the OldMaidHand class. We inherit it

from Hand.

17.7. OldMaidGame class

Now we can turn our attention to the game itself. OldMaidGame is a subclass

of CardGame with a new method called play that takes a list of players as a parameter.

Since __init__ is inherited from CardGame, a new OldMaidGame object contains a new

shuffled deck:

class OldMaidGame(CardGame):

 def play(self, names):

 # remove Queen of Clubs

 self.deck.remove(Card(0,12))

 # make a hand for each player

 self.hands = []

 for name in names:

 self.hands.append(OldMaidHand(name))

 # deal the cards

 self.deck.deal(self.hands)

 print "---------- Cards have been dealt"

 self.printHands()

 # remove initial matches

 matches = self.removeAllMatches()

 print "---------- Matches discarded, play begins"

 self.printHands()

 # play until all 50 cards are matched

 turn = 0

 numHands = len(self.hands)

 while matches < 25:

 matches = matches + self.playOneTurn(turn)

 turn = (turn + 1) % numHands

 print "---------- Game is Over"

 self.printHands()

The writing of printHands() is left as an exercise.

Some of the steps of the game have been separated into

methods. remove_all_matches traverses the list of hands and

invokes remove_matches on each:

class OldMaidGame(CardGame):

 ...

 def remove_all_matches(self):

 count = 0

 for hand in self.hands:

 count = count + hand.remove_matches()

 return count

count is an accumulator that adds up the number of matches in each hand and returns

the total.

When the total number of matches reaches twenty-five, fifty cards have been removed

from the hands, which means that only one card is left and the game is over.

The variable turn keeps track of which player’s turn it is. It starts at 0 and increases by

one each time; when it reaches numHands, the modulus operator wraps it back around

to 0.

The method playOneTurn takes a parameter that indicates whose turn it is. The return

value is the number of matches made during this turn:

class OldMaidGame(CardGame):

 ...

 def play_one_turn(self, i):

 if self.hands[i].is_empty():

 return 0

 neighbor = self.find_neighbor(i)

 pickedCard = self.hands[neighbor].popCard()

 self.hands[i].add(pickedCard)

 print "Hand", self.hands[i].name, "picked", pickedCard

 count = self.hands[i].remove_matches()

 self.hands[i].shuffle()

 return count

If a player’s hand is empty, that player is out of the game, so he or she does nothing and

returns 0.

Otherwise, a turn consists of finding the first player on the left that has cards, taking one

card from the neighbor, and checking for matches. Before returning, the cards in the

hand are shuffled so that the next player’s choice is random.

The method find_neighbor starts with the player to the immediate left and continues

around the circle until it finds a player that still has cards:

class OldMaidGame(CardGame):

 ...

 def find_neighbor(self, i):

 numHands = len(self.hands)

 for next in range(1,numHands):

 neighbor = (i + next) % numHands

 if not self.hands[neighbor].is_empty():

 return neighbor

If find_neighbor ever went all the way around the circle without finding cards, it would

return None and cause an error elsewhere in the program. Fortunately, we can prove

that that will never happen (as long as the end of the game is detected correctly).

We have omitted the print_hands method. You can write that one yourself.

The following output is from a truncated form of the game where only the top fifteen

cards (tens and higher) were dealt to three players. With this small deck, play stops after

seven matches instead of twenty-five.

>>> import cards

>>> game = cards.OldMaidGame()

>>> game.play(["Allen","Jeff","Chris"])

---------- Cards have been dealt

Hand Allen contains

King of Hearts

 Jack of Clubs

 Queen of Spades

 King of Spades

 10 of Diamonds

Hand Jeff contains

Queen of Hearts

 Jack of Spades

 Jack of Hearts

 King of Diamonds

 Queen of Diamonds

Hand Chris contains

Jack of Diamonds

 King of Clubs

 10 of Spades

 10 of Hearts

 10 of Clubs

Hand Jeff: Queen of Hearts matches Queen of Diamonds

Hand Chris: 10 of Spades matches 10 of Clubs

---------- Matches discarded, play begins

Hand Allen contains

King of Hearts

 Jack of Clubs

 Queen of Spades

 King of Spades

 10 of Diamonds

Hand Jeff contains

Jack of Spades

 Jack of Hearts

 King of Diamonds

Hand Chris contains

Jack of Diamonds

 King of Clubs

 10 of Hearts

Hand Allen picked King of Diamonds

Hand Allen: King of Hearts matches King of Diamonds

Hand Jeff picked 10 of Hearts

Hand Chris picked Jack of Clubs

Hand Allen picked Jack of Hearts

Hand Jeff picked Jack of Diamonds

Hand Chris picked Queen of Spades

Hand Allen picked Jack of Diamonds

Hand Allen: Jack of Hearts matches Jack of Diamonds

Hand Jeff picked King of Clubs

Hand Chris picked King of Spades

Hand Allen picked 10 of Hearts

Hand Allen: 10 of Diamonds matches 10 of Hearts

Hand Jeff picked Queen of Spades

Hand Chris picked Jack of Spades

Hand Chris: Jack of Clubs matches Jack of Spades

Hand Jeff picked King of Spades

Hand Jeff: King of Clubs matches King of Spades

---------- Game is Over

Hand Allen is empty

Hand Jeff contains

Queen of Spades

Hand Chris is empty

So Jeff loses.

17.8. Glossary

inheritance

The ability to define a new class that is a modified version of a previously defined class.

parent class

The class from which a child class inherits.

child class

A new class created by inheriting from an existing class; also called a subclass.

17.9. Exercises

Add a method, print_hands, to the OldMaidGame class which traverses self.hands and

prints each hand.

Source: http://openbookproject.net/thinkcs/python/english2e/ch17.html

