
HOW IS RASTEROP IMPLEMENTED

EFFICIENTLY?

Rasterop is implemented by shifting and masking operations that use the

low-level bit arithmetic operations available to the C compiler. These

include the binary bit logical operations (|, &, ^), the unary bit negation

operation (~), and the bit shifting operations (<< and >>). There are

three basic things one must do to make an efficient and flexible rasterop

function.

1. Pack the image data. The pixels must be bit-contiguous within

words. For example, for binary images, which have 1 bit/pixel

(1 bpp), 32 pixels are put in each 32-bit word.

2. Access the data by word. The word today is typically 32 bits.

Using word access allows the maximum number of pixels to be

affected by each machine operation. If and when 64-bit registers

become the standard ``word" size, the routines should be altered to

handle 8 bytes at a time.

3. Order the image data. The pixels, ordered from left to right, must

be placed in bytes with the most significant byte (MSB) in each

word to the left. This is required so that pixels within each word

shift properly across byte boundaries. For big-endian machines

(e.g., Sun) the byte order from left to right is 0123; for little-endian

machines (e.g., Intel) the byte order is 3210. The CPUs are

internally wired so that 32 bit words shift properly from MSB <-->

LSB with the << and >> bit shift operators.

Using 32-bit operations, the speed of a general rasterop is approximately

2 binary pixels/machine cycle. With a 1 GHz processor, you can expect

to operate on 2 x 10
9
 destination pixels/second!

Source: http://www.leptonica.com/rasterops.html

