Lecture Overview

• Open Addressing, Probing Strategies
• Uniform Hashing, Analysis
• Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

Another approach to collisions

• no linked lists
• all items stored in table (see Fig. 1)

```
item2
item1
item3
```

Figure 1: Open Addressing Table

• one item per slot \(\implies m \geq n \)
• hash function specifies order of slots to probe (try) for a key, not just one slot: (see Fig. 2)

Insert \((k,v)\)

```python
def Insert(k, v):
    for i in xrange(m):
        if T[h(k, i)] is None:
            # empty slot
            T[h(k, i)] = (k, v)
            return
        raise 'full'
```
Hashing III: Open Addressing

Figure 2: Order of Probes

Example: Insert $k = 496$

Search(k)

```python
for i in xrange(m):
    if T[h(k, i)] is None:
        # empty slot?
        return None
    elif T[h(k, i)][φ] == k:
        # matching key
        return T[h(k, i)]
    return None
```

Figure 3: Insert Example
Delete(k)

- can’t just set $T[h(k, i)] = \text{None}$
- example: delete(586) \implies search(496) fails
- replace item with DeleteMe, which Insert treats as None but Search doesn’t

Probing Strategies

Linear Probing

$h(k, i) = (h'(k) + i) \mod m$ where $h'(k)$ is ordinary hash function

- like street parking
- problem: clustering as consecutive group of filled slots grows, gets more likely to grow (see Fig. 4)

![Figure 4: Primary Clustering](image)

- for $0.01 < \alpha < 0.99$ say, clusters of $\Theta(\lg n)$. These clusters are known
- for $\alpha = 1$, clusters of $\Theta(\sqrt{n})$ These clusters are known

Double Hashing

$h(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m$ where $h_1(k)$ and $h_2(k)$ are two ordinary hash functions.

- actually hit all slots (permutation) if $h_2(k)$ is relatively prime to m
- e.g. $m = 2^r$, make $h_2(k)$ always odd

Uniform Hashing Assumption

Each key is equally likely to have any one of the $m!$ permutations as its probe sequence

- not really true
- but double hashing can come close
Analysis

Open addressing for \(n \) items in table of size \(m \) has expected cost of \(\leq \frac{1}{1-\alpha} \) per operation, where \(\alpha = \frac{n}{m} (\leq 1) \) assuming uniform hashing

Example: \(\alpha = 90\% \implies 10 \) expected probes

Proof:

Always make a first probe.
With probability \(\frac{n}{m} \), first slot occupied.
In worst case (e.g. key not in table), go to next.
With probability \(\frac{n-1}{m-1} \), second slot occupied.
Then, with probability \(\frac{n-2}{m-2} \), third slot full.
Etc. (n possibilities)

So expected cost \(\leq 1 + \frac{n}{m}(1 + \frac{n-1}{m-1}(1 + \frac{n-2}{m-2}(\cdots)) \)

Now \(\frac{n-1}{m-1} \leq \frac{n}{m} \) for \(i = \phi, \cdots, n (\leq m) \)
So expected cost \(\leq 1 + \alpha(1 + \alpha(1 + \alpha(\cdots))) \)
\(= 1 + \alpha + \alpha^2 + \alpha^3 + \cdots \)
\(= \frac{1}{1-\alpha} \)

Open Addressing vs. Chaining

Open Addressing: better cache performance and rarely allocates memory

Chaining: less sensitive to hash functions and \(\alpha \)
Advanced Hashing

Universal Hashing

Instead of defining one hash function, define a whole family and select one at random

- e.g. multiplication method with random a
- can prove Pr (over random h) $\{h(x) = h(y)\} = \frac{1}{m}$ for every (i.e. not random) $x \neq y$
- $\implies O(1)$ expected time per operation without assuming simple uniform hashing!

Perfect Hashing

Guarantee $O(1)$ worst-case search

- idea: if $m = n^2$ then $E[\#\text{ collisions}] \approx \frac{1}{2}$
 \implies get ϕ after $O(1)$ tries . . . but $O(n^2)$ space

- use this structure for storing chains