HANDLING MULTIPLE DEVICES

Let us now consider the situation where a number of devices capable of initiating interrupts are connected to the processor. Because these devices are operationally independent, there is no definite order in which they will generate interrupts. For example, device X may request an interrupt while an interrupt caused by device Y is being serviced, or several devices may request interrupts at exactly the same time. This gives rise to a number of questions

1. How can the processor recognize the device requesting an interrupt?
2. Given that different devices are likely to require different interrupt-service routines, how can the processor obtain the starting address of the appropriate routine in each case?
3. Should a device be allowed to interrupt the processor while another interrupt is being serviced?
4. How should two or more simultaneous interrupt requests be handled?

The means by which these problems are resolved vary from one computer to another, and the approach taken is an important consideration in determining the computer’s suitability for a given application.

When a request is received over the common interrupt-request line, additional information is needed to identify the particular device that activated the line.
The information needed to determine whether a device is requesting an interrupt is available in its status register. When a device raises an interrupt request, it sets to 1 one of the bits in its status register, which we will call the IRQ bit. For example, bits KIRQ and DIRQ are the interrupt request bits for the keyboard and the display, respectively. The simplest way to identify the interrupting device is to have the interrupt-service routine poll all the I/O devices connected to the bus. The first device encountered with its IRQ bit set is the device that should be serviced. An appropriate subroutine is called to provide the requested service.

The polling scheme is easy to implement. Its main disadvantage is the time spent interrogating the IRQ bits of all the devices that may not be requesting any service. An alternative approach is to use vectored interrupts, which we describe next.

Vectored Interrupts:-

To reduce the time involved in the polling process, a device requesting an interrupt may identify itself directly to the processor. Then, the processor can immediately start executing the corresponding interrupt-service routine. The term vectored interrupts refers to all interrupt-handling schemes based on this approach.

A device requesting an interrupt can identify itself by sending a special code to the processor over the bus. This enables the processor to identify individual devices even if they share a single interrupt-request line. The code supplied by the device may represent the starting address of the interrupt-service routine for that device. The code length is typically in the range of 4 to 8 bits. The remainder of the address is supplied by the processor based on the area in its memory where the addresses for interrupt-service routines are located.
This arrangement implies that the interrupt-service routine for a given device must always start at the same location. The programmer can gain some flexibility by storing in this location an instruction that causes a branch to the appropriate routine.

Interrupt Nesting:

Interrupts should be disabled during the execution of an interrupt-service routine, to ensure that a request from one device will not cause more than one interruption. The same arrangement is often used when several devices are involved, in which case execution of a given interrupt-service routine, once started, always continues to completion before the processor accepts an interrupt request from a second device. Interrupt-service routines are typically short, and the delay they may cause is acceptable for most simple devices.

For some devices, however, a long delay in responding to an interrupt request may lead to erroneous operation. Consider, for example, a computer that keeps track of the time of day using a real-time clock. This is a device that sends interrupt requests to the processor at regular intervals. For each of these requests, the processor executes a short interrupt-service routine to increment a set of counters in the memory that keep track of time in seconds, minutes, and so on. Proper operation requires that the delay in responding to an interrupt request from the real-time clock be small in comparison with the interval between two successive requests. To ensure that this requirement is satisfied in the presence of other interrupting devices, it may be necessary to accept an interrupt request from the clock during the execution of an interrupt-service routine for another device.

This example suggests that I/O devices should be organized in a priority structure. An interrupt request from a high-priority device should be accepted while the processor is servicing another request from a lower-priority device.
A multiple-level priority organization means that during execution of an interrupt-service routine, interrupt requests will be accepted from some devices but not from others, depending upon the device’s priority. To implement this scheme, we can assign a priority level to the processor that can be changed under program control. The priority level of the processor is the priority of the program that is currently being executed. The processor accepts interrupts only from devices that have priorities higher than its own.

The processor’s priority is usually encoded in a few bits of the processor status word. It can be changed by program instructions that write into the PS. These are privileged instructions, which can be executed only while the processor is running in the supervisor mode. The processor is in the supervisor mode only when executing operating system routines. It switches to the user mode before beginning to execute application programs. Thus, a user program cannot accidentally, or intentionally, change the priority of the processor and disrupt the system’s operation. An attempt to execute a privileged instruction while in the user mode leads to a special type of interrupt called a privileged instruction.

A multiple-priority scheme can be implemented easily by using separate interrupt-request and interrupt-acknowledge lines for each device, as shown in figure. Each of the interrupt-request lines is assigned a different priority level. Interrupt requests received over these lines are sent to a priority arbitration circuit in the processor. A request is accepted only if it has a higher priority level than that currently assigned to the processor.
Simultaneous Requests:-

Let us now consider the problem of simultaneous arrivals of interrupt requests from two or more devices. The processor must have some means of deciding which requests to service first. Using a priority scheme such as that of figure, the solution is straightforward. The processor simply accepts the requests having the highest priority.

Polling the status registers of the I/O devices is the simplest such mechanism. In this case, priority is determined by the order in which the devices are polled. When vectored interrupts are used, we must ensure that only one device is selected to send its interrupt vector code. A widely used scheme is to connect the devices to form a daisy chain, as shown in figure 3a. The interrupt-request line $INTR$ is common to all devices. The interrupt-acknowledge line, INTA, is connected in a daisy-chain fashion, such that the INTA signal propagates serially through the devices.
(3.a) Daisy chain

Priority arbitration
Circuit (3.b) Arrangement of priority groups

When several devices raise an interrupt request and the \textit{INTR} line is activated, the processor responds by setting the INTA line to 1. This signal is received by device 1.
Device 1 passes the signal on to device 2 only if it does not require any service. If device 1 has a pending request for interrupt, it blocks the INTA signal and proceeds to put its identifying code on the data lines. Therefore, in the daisy-chain arrangement, the device that is electrically closest to the processor has the highest priority. The second device along the chain has second highest priority, and so on.

The scheme in figure 3.a requires considerably fewer wires than the individual connections in figure 2. The main advantage of the scheme in figure 2 is that it allows the processor to accept interrupt requests from some devices but not from others, depending upon their priorities. The two schemes may be combined to produce the more general structure in figure 3b. Devices are organized in groups, and each group is connected at a different priority level. Within a group, devices are connected in a daisy chain. This organization is used in many computer systems.

Source: http://elearningatria.files.wordpress.com/2013/10/cse-iv-computer-organization-10cs46-notes.pdf