
HTML5 CANVAS

Canvas element - circles and ellipses

Several new elements have been introduced with the release of hTML5.
Perhaps the most significant, is the canvas element which now makes it
possible to draw, add text and create animations using Javascript. It is also
possible to manipulate images. To make full use of the canvas element
requires a knowledge of the Javascript Math object, and it's also helpful if
you know how to convert between rectangular and polar coordinates. In
common with most other program languages, angular coordinates are
measured in radians. A quick maths refresher is shown below, and a more
detailed explanation can also be found here

Because the <canvas> element is still relatively new this will not work in
older browsers (e.g. Internet Explorer versions below IE9). A means of
providing alternate (fallback) content is therefore required for a browser
doesn't support the canvas element.

Of course, the ability to add drawings etc. to HTML isn't new. Similar
features found in the canvas tag, are also available with Structured
Vector Graphics (SVG).

Maths refresher

http://www.soslug.org/node/Radian.htm

Here is a simple helper function to convert degrees to radians e.g.
var rad = radians(30);

function radians(degrees)
{
 //helper function to convert degrees to radians
 return parseInt(degrees)*Math.PI/180;
}

Example using HTML canvas element

The first example will draw an ellipse. For comparison purposes, the
procedure used is similar to the example built using the Scratch programming
language which was developed by MIT. The first task set up the canvas
making it the same size as the Scratch stage. The two obvious program
differences between Scratch and Javascript is a)the coordinates axis and b)
the fact that angles are now measured in radians

The javascript program is show below. If you have built the Scratch examples
then its instructive to compare the differences.

function drawCircle()
{
 // Create a circle or ellipse
 var canvas = document.getElementById("fig4");
 var cntx = canvas.getContext("2d");
 cntx.strokeStyle = "#000"; //set pen colour
 cntx.beginPath(); //start new path
 //set values for major and minor axis
 var A = 200; var B = 120;
 var originx = 240; var originy = 180; //set origin
 cntx.moveTo(originx + A,originy); //move to starting point
 //start withangle = 0 and loop round 2 PI radians
 //incrementing angle by 0.1 radian
 for(var angle=0;angle<2*Math.PI;angle+=0.1)
 {
 var x = A * Math.cos(angle) + originx
 var y = B * Math.sin(angle) + originy;
 cntx.lineTo(x,y); //draw line to new point
 }
 cntx.closePath();
 cntx.stroke(); //create stroke
}

Using the canvas arc function

Here is an alternative way of drawing circles and ellipses by making use of
the canvas arc function. The first function shown will clear the canvas, using
the clearRect() method.

function clearCanvas()
{
 //clear the canvas
 var canvas = document.getElementById("fig4");
 var cntx = canvas.getContext("2d");
 cntx.clearRect(0, 0, canvas.width, canvas.height);
}

function drawArc()
{
 // Create a circle or ellipse
 var canvas = document.getElementById("fig4");
 var context = canvas.getContext("2d");
 context.save();

 var A = 120; //values for major/minor axis
 var sx = 1; var sy =1.25; //set scale values
 var originx = canvas.width/2;
 var originy = canvas.height/2; //set origin

 context.beginPath(); //start new path
 context.scale(sx,sy);
 context.strokeStyle = "#000"; //set pen colour
 // arc(originx,originy,radius,startAngle,endAngle, anticlockwise)
 // anticlockwise is either true or false

 context.arc(originx/sx,originy/sy,A,0,Math.PI*2);
 context.fillStyle = "#ff0"; //set pen colour
 context.fill();

 context.restore();
}

program output

Note: When calling the fill method, any open shapes will be closed
automatically and it isn't necessary to use the closePath method.
Note: colors may be specified as "#rgb", "#rrggbb", rgb(rr,gg,bb) or
rgba(rr,gg,bb,opacity). The rgba() function is similar to the rgb() function
but it has one extra parameter. The last parameter specifies the
transparency value. The valid range is between 0.0 (fully transparent)
and 1.0 (fully opaque).

Parithy
Typewritten Text
Source : http://www.soslug.org/node/1732

	HTML5 CANVAS
	Canvas element - circles and ellipses
	Maths refresher

	Example using HTML canvas element
	Using the canvas arc function
	program output

