
International Journal of Computer & Communication Technology ISSN (PRINT): 0975 - 7449, Volume-3, Issue-5, 2012

87

HTCPM: A HYBRID TEST CASE PRIORITIZATION MODEL FOR
WEB AND GUI APPLICATIONS

P.DILEEP KUMAR REDDY & A. ANANDA RAO

Department of CSE, JNTUA College of Engineering, Ananthapur, India.
Email: dileep_kumar_reddy@yahoo.co.in, akepougu@gmail.com

Abstract- Web and Event-driven applications (EDS) is a class of applications that is quickly becoming ubiquitous. All EDS
take sequences of events (e.g., messages, mouse-clicks) as input, change their state, and produce an output (e.g., events,
system calls, text messages), where as in web, user session data gathered as users operate web applications can be considered
as input, change their state, and produce an output. Examples include web applications, graphical user interfaces (GUIs),
network protocols, device drivers, and embedded applications. Testing for functional correctness of EDS such as stand-alone
GUI and web-based applications is critical to many organizations. These applications share several important characteristics.
Both are particularly challenging to test because users can invoke many different sequences of events that affect application
behavior. Hence here a novel model is provided to rank the test cases based on their prioritization.

Keywords - event driven software (EDS), test suite prioritization, web application testing, GUI testing.

1 INTRODUCTION:

Web and Event-driven applications (EDS) may be a
class of applications that's bound axis into
omnipresent. Examples embrace net applications;
graphical user interfaces (GUIs), arrangement
protocols, accessory drivers, and anchored
applications. Testing for advantageous definiteness of
EDS like stand-alone GUI and web-based
applications is important to several organizations.
These applications allotment is abounding basic
characteristics. Anniversaries are decidedly difficult
to analysis as an aftereffect of users will adjure
abounding assorted sequences of contest that accept
an aftereffect on appliance behavior. Researchers
accept developed abounding models for automatic
GUI testing [1] and net appliance testing [2]–
[4].Despite the on top of similarities of GUI and net
applications, all the efforts to handle their accepted
testing issues are created alone attributable to 2
reasons. The absence of such a archetypal has
prevented the accident of aggregate testing techniques
and algorithms which will be acclimated to analysis
anniversary class of applications. To aftermath focus,
we tend to extend Analysis prioritization archetypal
[29] archetypal to another testing issues that are
aggregate by GUI and net applications. The accurate
contributions of this plan include: a amalgam
archetypal for testing stand-alone GUI and web-based
applications, a aggregate prioritization accomplish
based mostly on the abstruse model, and aggregate
prioritization criteria. The after-effects appearance
that GUI and web-based applications, if adapt
appliance the model, showed agnate behavior,
reinforcing our acceptance that these categories of
applications care to be modeled and advised along.

Given the Language of web applications in agnate
way of accident breeze based applications,
adulterated web applications can accept extensive
after-effects on businesses, economies, accurate

progress, and health. To abode this problem,
abounding types of web appliance validation
techniques accept been proposed and abounding
accoutrement accept been created. Those
accoutrements that do focus on anatomic
requirements primarily board basement to abutment
capture-replay: recording tester ascribe sequences for
use in testing and corruption testing. Recently, a few
added academic approaches for testing the anatomic
requirements of web applications accept been
proposed [11, 17]. The approaches accept apparent
affiance in aboriginal empiric studies in agreement of
abutment for amalgam “adequate” (by some criterion)
analysis suites. However, the approaches as well
accept drawbacks, in allotment due to differences
amid web applications and systems developed and
operated beneath added acceptable paradigms.
Among these differences, we accede three in
particular. First, the acceptance of web applications
can change rapidly. In such cases, analysis suites
advised with accurate user profiles in apperception
may about-face out to be inappropriate. Second, web
applications about abide changes at a faster amount
than added software systems. To board such changes,
testing approaches have to be automatable and
analysis suites have to be adaptable. Finally, web
applications about absorb complex, multi-tiered,
amalgamate architectures including web servers,
appliance servers, database servers, and audience
acting as interpreters.

2 RELATED WORKS

The new testing techniques for GUI which has a fixed
set of properities and hierarchical in nature and web
based applications in which pages are accessed by
user through browser and transmit over network and
these techniques are discussed below. Session driven
applications are used in web application and Event
flow application are used in GUI.

HTCPM: A Hybrid Test Case Prioritization Model for Web and GUI Applications

International Journal of Computer & Communication Technology ISSN (PRINT): 0975 - 7449, Volume-3, Issue-5, 2012

88

A.Session driven applications:

 The testing of web applications has been led by
industry, whose techniques accept been aggressive
primarily against validation of non-functional
requirements. This is axiomatic in the amount and
array of absolute accoutrement accessible for the
almost new web appliance domain. This
accoutrement ambit from markup argument Language
validators and hotlink checkers to assorted amount
testing and achievement altitude tools.1 the array and
abundance of accoutrement for testing anatomic
requirements of web applications, on the added hand,
is abundant added limited. The lot of accepted chic of
an atomic testing accoutrement accommodate
basement to abutment the abduction and epitomize of
accurate user scenarios [16, 18]. Testers assassinate
accessible user scenarios and the accoutrement
almanac contest and construe them into a alternation
of scripts that can be replayed after for anatomic and
corruption testing. Added classes of an atomic testing
accoutrement accomplish assay cases by
accumulation some blazon of web website aisle assay
algorithm with tester provided inputs [13, 15]. A
ancestor framework amalgam these assorted
appearance is presented in [19]. Recently, two added
academic techniques accept been proposed to
facilitate testing of anatomic requirements in web
applications. Both techniques apply forms of
archetypal based testing, but can be classified as
“white-box” techniques, back they await on advice
aggregate from the web appliance cipher to
accomplish the models on which they abject their
testing. Liu et al. [11] adduce Web Assay Model,
which considers anniversary web appliance basic as
an article and generates assay cases based on
abstracts breeze amid those objects. Ricca and
Tonella [17] adduce a archetypal based on the
Unified Modeling Language (UML), to accredit web
appliance change assay and assay case generation.
These techniques, in essence, extend acceptable aisle
based assay bearing and abstracts breeze capability
appraisal to the web appliance domain; the additional
as well builds on the actuality of accepted UML
Modeling capabilities. It is account acquainted that
the capability of these techniques has been evaluated
alone in agreement of adeptness to accomplish
advantage adequacy. No reports are found to date of
studies assessing fault detection capabilities of the
techniques.

B. Event flow applications

A GUI is that the front-end to an applications’ basal
backend code. An end-user interacts with the
applications via events; the applications acknowledge
by alteration its accompaniment that is sometimes
mirrored by changes to the GUI’s widgets. for
instance, a single-user appliance like Microsoft Paint
employs a aboveboard single-user GUI, with

detached events, every absolutely anticipated in its
ambience of use, acclimated to ascendancy
aboveboard widgets that modification their
accompaniment alone in acknowledgment to user-
generated events. To aftermath focus, this cardboard
can cope with a acute class of GUIs.

The all-important characteristics of GUIs during this
class embrace their graphical orientation, event-
driven input, hierarchical anatomy of airheaded and
windows, the altar (widgets, windows, frames) they
contain, and accordingly the backdrop (attributes) of
these objects. Formally, the class of GUIs of
absorption could as well be categorical as follows: A
Graphical User Interface (GUI) may be a hierarchical,
graphical front-end to a applications arrangement that
accepts as ascribe user-generated and system-
generated contest from a set of contest and produces
deterministic graphical output. A GUI contains
graphical objects; every article encompasses a
attached set of properties. At any time throughout the
beheading of the GUI, these backdrops accept
detached values; the set of that constitutes the
accompaniment of the GUI. GUI testing, during this
paper, is categorical as appliance the complete
appliance by breeding alone GUI inputs with the
absorbed of award failures that apparent themselves
through GUI widgets.

Lot of accepted accoutrement acclimated totes GUIs
are capture/replay accoutrement like WinRunner1that
action little automation [1], decidedly for
authoritative analysis cases. There are tries to
advance state-machine models to automate some
aspects of GUI testing; e.g., test-case bearing and
corruption testing [8].

3 HYBRIDIZING THE TEST

PRIORITIZATION APPROACH

Empirical analysis model helps to verify properties
required to improve the single model strategies using
hybrid prioritization. Empirical analysis model helps
to improve the rate of fault diction. The function
takes as input a set of test cases to be ordered, and
returns a sequence that is ordered by the prioritization
criterion. Combined model is used in the work which
has prioritization criteria and also prioritization
function has been considered. The ultimate goal is
proper testing of Event Driven Software.

A. User Session based test prioritization

User session based techniques one attached agency in
the use of white box web appliance testing techniques
such as Ricca and Tonella’s is the amount of award
inputs that exercise the arrangement as desired.
Selection of such inputs is apathetic and accepts to be
able manually [17]. User-session based techniques

HTCPM: A Hybrid Test Case Prioritization Model for Web and GUI Applications

International Journal of Computer & Communication Technology ISSN (PRINT): 0975 - 7449, Volume-3, Issue-5, 2012

89

can advice with this botheration by clearly accession
user interactions and transforming them into analysis
cases. The techniques abduction and abundance the
clients’ requests in the anatomy of URLs and name-
value pairs, and again administer strategies to these to
accomplish analysis cases.

Because accustomed web appliance operation
consists of accepting and processing requests, and
because a web appliance runs in just one ambiance
which the alignment assuming the testing controls,
the accumulating of applicant appeal advice can be
able easily. For example, with basal agreement
changes, the Apache web server can log all
accustomed requests [1]. Another hardly added able
but beneath cellophane another that can abduction all
name-value pairs consists of abacus snippets of java
Software to the delivered web pages so that all
requests adjure a server ancillary logging script.

As a consequence, user-session based techniques do
not crave added basement to aggregate this data,
attached the appulse on web appliance performance.
This is agnate to accepting a congenital chart
mechanism, an access able-bodied ill-fitted to web
applications. Another advantage of accession just the
requests is that at that college absorption level, some
of the complexities alien by amalgamate web
appliance architectures are hidden. This lessens the
dependencies of user-session based techniques on
changes in web appliance components.

Given the calm URL and name-value pairs, there are
abounding means in which analysis cases could be
generated. The simplest access is to sequentially
epitomize alone user sessions. A additional access is
to epitomize a admixture of interactions from several
users. A third access is to epitomize sessions in
alongside so that requests are handled concurrently. A
fourth access is to mix approved user requests with
requests that are acceptable to be ambiguous (e.g.,
abyssal astern and advanced while appointment a
form).

A complicating agency for these approaches involves
web appliance state. If a specific user appeal is
fabricated of a web application, the aftereffect of that
appeal may depend on factors not absolutely captured
in URL and name amount pairs alone; for example,
an airline catch appeal may action abnormally
depending on the basin of accessible seats. Further,
the adeptness to assassinate consecutive tests may
depend on the arrangement accompaniment
accomplished by above-mentioned tests. The simplest
access of replaying user sessions in their absoluteness
is not afflicted by appliance state, provided that
antecedent arrangement accompaniment is accepted
and can be instantiated. The use of added circuitous
approaches such as intermixed or alongside replay,
however, ability generally be afflicted by state. In

such cases, one access for appliance user-session
abstracts is to periodically yield snapshots of the
accompaniment ethics (or of a subset of those values)
that potentially affect web appliance response.
Associating such snapshots with specific requests, or
sequences of requests, increases the likelihood of
getting able to carbon portions of user sessions, at the
amount of assets and infrastructure.

An additional another is to avoid accompaniment if
breeding analysis cases. The consistent analysis cases
may not absolutely carbon the user action on which
they are based, but they may still agreeably deliver
testing accomplishment about to one aspect of the
users’ operational contour (the aspect captured by the
operation) in a address not accomplished by white-
box testing. From this perspective, the action of
appliance user session abstracts to accomplish
analysis cases is accompanying to the angle of
administration the ascribe area of an appliance
beneath analysis in the hopes of getting able to finer
sample from the consistent partitions [21]. In this
context, the abeyant account of user-session based
testing techniques, like the abeyant account of white-
box testing techniques; charge not blow alone on
getting able to absolutely carbon a accurate user
session. Rather, that account may abide in appliance
user session abstracts to accommodate able
administration heuristics, calm with ascribe abstracts
that can be adapted into analysis cases accompanying
to the consistent partitions.

The approaches that have been described for
generating test data from user sessions and for
addressing the problem of applications state each
have potential cost and benefits that must be
explored. In this paper, the centralization is on two
specific user-session based techniques — a address
that applies absolute sessions, and a address that
replays a admixture of sessions — anniversary after
accumulation advice on state. These techniques are
almost simple, and if they prove able this would
actuate added analysis on added circuitous
techniques, and added analysis of the tradeoffs a part
of techniques.

The first technique, User Session to Test Case
transformation (USTCT), transforms each individual
user session into a test case. Given m user sessions,

2 3, , ,......I mU U U U , with user session iU

consisting of n requests 1 2 3, , ,.... nr r r r , where each

ir consists of  url name value * , the test case

corresponding to iU is generated by formatting each

of the requests, from 1r to rn , into an http request
that can be sent to a web server. The resulting test
suite contains m test cases, one for each user session.
(For simplicity, we define a user session as beginning

HTCPM: A Hybrid Test Case Prioritization Model for Web and GUI Applications

International Journal of Computer & Communication Technology ISSN (PRINT): 0975 - 7449, Volume-3, Issue-5, 2012

90

when a request from a new IP address reaches the
server and ending when the user leaves the web site
or the session times out.) Our second technique user
interactive test case transformation (UITCT)user-
session based technique, UITCT, generates new user
sessions based on the pool of collected data, creating
test cases that contain requests belonging to different
users. UITCT is meant to expose error conditions
caused by the use of sometimes conflicting data
provided by different users. UITCT generates a test
case as follows:

 Randomly select unused session aU from
session pool;

 Copy requests r1 through ir , where ‘ i ’ is a
random number greater than 1 but smaller
than n , into the test case;

 Randomly select session bU , where b a ,

and search for any jr with the same URL as

ir , and if an equivalent request is not found,

select another session bU ;

 Add all the requests from aU after jr to the
test case;

 Mark aU “used”, and repeat the process
until no more unused sessions are available
in the pool.

In a sense, USTCT is analogous to a constrained
version of a capture-replay tool (e.g, Rational Robot
[16]) in which we capture just the URL and name-
value pairs that occur throughout a session. In
contrast to approaches that capture user events at the
client site, however, which can become complicated
as the number of users grows, our approach captures
just the URL and name-value pairs that, are the result
of a sequence of the user’s events, captured at the
server site. This alleviates some of the privacy
problems introduced by the more intensive
instrumentation used by some capture replay tools.

Both USTCT and UITCT also have several other
potential advantages. First, by utilizing user requests
as the base for generating test cases, the techniques
are less dependent on the complex and fast changing
technology underlying web applications, which is one
of the major limitations of white box approaches
designed to work with a subset of the available
protocols. Second, the level of effort involved in
capturing URL and name-value pairs is relatively
small as these are already processed by web
applications. This is not the case with white box
approaches such as Ricca and Tonella’s, which
require a high degree of tester participation. Third,
with these approaches, each user is a potential tester:
this implies potential for an economy of scale in

which additional users provide more inputs for use in
test generation. The potential power of the techniques
resides in the number and representativeness of the
URL and name-value pairs collected, and the
possibility of their use in generating a more powerful
test suite (an advantage that must be balanced,
however, against the cost of gathering the associated
user-session data). Finally, both approaches, unlike
traditional capture and replay approaches,
automatically capture authentic user interactions for
use in deriving test cases, as opposed to interactions
created by testers.

The approach is meant to be hybridized even to test
event flow based applications, applied either in the
beta testing phase to generate a baseline test suite
based on interactions under beta version, or during
subsequent maintenance to enhance a test suite that
was originally generated by a more traditional
method. Further, the approach can help testers
monitor and improve test suite quality as the web
application evolves, and as its usage proceeds beyond
the bounds anticipated in earlier releases and earlier
testing.

B.GUI Test case Prioritization using Event flow

Bryce and Memon prioritize pre-existing test
suites[6].[7],[8] for GUI-based programs by the
lengths of tests (i.e., the number of steps in a test
case, where a test case is a sequence of events that a
user invokes through the GUI), early coverage of all
unique events in a test suite, and early event
interaction coverage between windows (i.e., select
tests that contain combinations of events invoked
from different windows which have not been covered
in previously selected tests). In half of these
experiments, event interaction-based prioritization
results in the fastest fault detection rate. The two
applications that cover a larger percentage of
interactions in their test suites (64.58% and 99.34%
respectively) benefit from prioritization by interaction
coverage. The applications that cover a smaller
percentage of interactions in their test suites (46.34%
and 50.75% respectively) do not benefit from
prioritization by interaction coverage. We concluded
that the interaction coverage of the test suite is an
important characteristic to consider when choosing
this prioritization technique. In this we are testing
GUI applications, which have set of windows and
each window contains the number of components and
each component generates the events. So in our
system we are checking whether each component
generates specified event or not [12]. For example on
clicking on submit button the new window will be
opened, this is the requirement. Then after clicking on
the submit button new window is opening or not is
checked , if opened then there is no fault in the
system, if not opened then there is fault in the system,
then checking the event handler of each component.

HTCPM: A Hybrid Test Case Prioritization Model for Web and GUI Applications

International Journal of Computer & Communication Technology ISSN (PRINT): 0975 - 7449, Volume-3, Issue-5, 2012

91

In this system first user select the page which he
wants to test. Then after selecting the page our system
checks the code. Then the page will get displayed.
The user performs action on that page. In swing
application there are number of components and each
component has event handler. So restriction is made
on application to test only some component and event
handlers [13]. Such as label buttons, frame,
checkboxes, radio buttons etc. Developer develops
swing application simply on swing window. Each
swing window consists of frame, number of
components and event handlers. So just only by
looking the component we can’t recognize that
components are working properly. The developed
window is taken as input to the tools that parse the
code and starts the testing [14].

This test process is in the sequence of

 First it checks how many components are on
the window.

 Then it checks whether they are initialized
or not.

 Then checks whether they are added on
frame or not.

 Then checks each component have action
listener or not.

 Then checks label of each component to
check different component having same
name or not

 After finding out the faults, we are
displaying all those faults with simplified
messages.

 Whether developer forgot to set frame
visible true or not. We are checking whether
he /she set the frame visibility mode true or
not.

C. Hybrid Model:

To advance the Hybrid Model, ancient analysis is
conducted, how GUI and web applications operate.
For GUI applications, action admirers are allegedly
the easiest—and a lot of common—event handlers to
implement. In GUI models, the programmer
accouterments an action adviser that acknowledges
the user’s adumbration, which is some
implementation-dependent action should occur.
When the user performs an event, e.g., clicks a
button, chooses a agenda item, an action blow occurs.
The aftereffect is that (using the Java convention) an
action Performed account is adorable to all action
admirers that are registered on the accordant
component. That is, some accoutrement
accomplishments are handled at the appellant (e.g., in
the assay of JavaScript blank in the browser),
accepting others, such as the Submit button actuate a
GET or POST address from the appellant to the
server. In our advanced work, GET/POST actions
alone are modeled, i.e., those accomplishments that

could cause a appellant to advanced and acquire
abstracts from the server. Clients ide challenge were
acclimated to set variables that were acclimated as
realm to the complete GET/POST event. Consider the
“preferences setting” babble discussed earlier, except
that it is now in a web page. The advanced archetypal
of a web blow would not action all the abandoned
radio-button and check-box settings as abandoned
events; instead it would use the accoutrement settings
as realm to the Ok button’s POST request. These two
advanced models of GUI (each action as an event)
and web (only GET/POST accomplishments as
events) were incompatible. If usage of these two
models to absorption the characteristics of GUI and
web applications. A new Hybrid Archetypal that can
tie these appliance classes together will be charger
would be apprehend to get incorrect and breathless
results.

Despite the differences in how GUI and web
applications were modeled in advanced research,
these two classes of applications acquire abounding
similarities. This agenda draws aloft these similarities
to achieve the Hybrid Archetypal for assay
accommodation prioritization of both GUI and web
applications. Now assay similarities in these
applications and advanced a unified set of acceding
via examples. Figure 1a shows a classic window from
a GUI apparatus advantaged “Find”. We use the
appellation window to ascribe to GUI windows such
as this Find window. The window has several
widgets. A user about sets some accomplishments of
these widgets (e.g., blockage a check-box, abacus
altercation to a text-field) and “submits” this
information. Underlying blank afresh uses these
settings to achieve changes to the applications state.
Because of how widgets are acclimated in the GUI
are referred as parameters.

Settings for the widgets as values are accredited. The
confidence on the brace as parameter-values is
shown. For instance, in Figure 1a, the “Find what”
drop-down box is a connected with the bulk
“applications defect”; the “Match case” checkbox is a
connected with the bulk “false”; these realms are
acclimated by actions. Figure 1b shows all attainable
parameter-values for the window credible in Figure
1a. In this paper, afterwards adjustment of user
interactions on a alone window as an action will be
accredited. A classic of an action for the Find window
is the adjustment “enter ‘applications defect’ in text-
box,” “check ‘Match case’ check-box,” “click-on’
Find Next’ button”. Similarly, for web applications,
web apparatus page as a window are accredited. As
with GUIs, widgets in a window are referred to as
parameters, and their settings as values. Figure 1c
shows a sample web page (one window). Figure 1d
lists the four parameter-values on the window. For
instance, the “Login” altercation acreage is a
connected that is set to the bulk “guest”.

HTCPM: A Hybrid Test Case Prioritization Model for Web and GUI Applications

International Journal of Computer & Communication Technology ISSN (PRINT): 0975 - 7449, Volume-3, Issue-5, 2012

92

In accretion to realm accepting belief from user
interactions, apparatus may ascribe belief to realm on
the page, e.g., hidden assay fields and their values. In
this paper, to both types of parameter-values are
acceded. When a user clicks on the “Login” button on
a web page, an actionist will invoked, that is, an
HTTP POST or GET address accepting to the web
server. The parameter-value settings in the window
are transmitted to the web server. Note that a GUI
activity is authentic anxiously so that unified
alternation is accepted amidst GUI and web
applications for this paper. GUI and web applications
are the examples for the Event Driven Software.

 For instance, in web applications, there may be
different user interactions one alone window in which
users set belief for realm afore any admonition is in
actuality adorable to the web server (e.g., a POST or
GET request). To advanced steadiness in our
alternation for both GUI and web applications, the
appellation action.

To be the afterwards set of allures interactions on a
alone window afore melancholia to a new window is
arranged.

4. MODELING TEST CASES

A test case is modeled as a sequence of actions. For
each action, a user sets a value for one or more
parameters. Figure 1 explores a sample call tree of
event flow based gui application and user session log
of a web application

Fig 1: Example event flow based call tree and web user session
log

5. PERFORMANCE ANALYSIS

The performance of the proposed hybrid test
prioritization model in short can refer as HTPM was
tested on event call tree generated from a sample java
swing application and a simulated web application
session log with 22 sessions. Fig 1 exhibits the
sample format of the input. JAVA 1.6_ 20th build
was employed for accomplishment of the proposed
HTPM test. A workstation equipped with core2duo
processor, 2GB RAM and Windows XP installation
was made use of for investigation of the algorithms.

The parallel replica was deployed to attain the thread
concept in JAVA. With the results, it is evident that
test case ranking based on their priority was achieved
by minimizing the 97.5% of redundancy in test case
selection while retaining the scalability in execution.
Fig 2and 3 indicates the advantage of HTPM over
single model for Test case prioritization (SM-TCP)
[29] in terms of test case ranking by their priority.

Fig 2: A line chart representation of Memory utilization by
single model and hybrid model.

Fig 3: A bar chart representation of redundant test cases
selected by single and hybrid models

6. CONCLUSIONS

Here in this paper a Hybrid Test case Prioritization
Model alleged HTCPM is proposed in adverse to
Previous works those treats stand-alone GUI and
web-based applications as abstracted areas of
research. However, these types of applications accept
abounding similarities that acquiesce to actualize a
Hybrid Model for testing such event apprenticed
systems. This archetypal may advance approaching
analysis to add broadly focus on stand-alone GUI and
web based applications instead of acclamation them
as break topics. Other advisers can use our accepted
archetypal to administer testing techniques added
broadly. Within the ambience of this model, we
advance and empirically appraise several
prioritization criteria. The empiric abstraction
evaluates the prioritization criteria. The adeptness to
advance prioritization belief for two types of event-
driven software indicates the account of our Hybrid
Model for the issue of test prioritization. The after-

HTCPM: A Hybrid Test Case Prioritization Model for Web and GUI Applications

International Journal of Computer & Communication Technology ISSN (PRINT): 0975 - 7449, Volume-3, Issue-5, 2012

93

effects are able as abounding of the prioritization
belief that is used advance the amount of
accountability apprehension over accidental
acclimation of analysis cases. The archetypal through
the appliance of test suit prioritization is made
accurate by applying several prioritization criteria.

REFERENCES

[1] A. M. Memo and Q. Xie, “Studying the fault-detection
effectiveness of GUI test cases for rapidly evolving
software,” IEEE Trans.Softw. Eng., vol. 31, no. 10, pp. 884–
896, Oct. 2005.

[2] A. Andrews, J. Offutt, and R. Alexander, “Testing web
applications by modeling with FSMs,” Software and Systems
Modeling,vol. 4, no. 3, pp. 326–345, Jul. 2005.

[3] G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini,
“Testing web applications,” in the IEEE Intl. Conf. on
Software Maintenance. Montreal, Canada: IEEE Computer
Society, Oct. 2002, pp. 310–319.

[4] F. Ricca and P. Tonella, “Analysis and testing of web
applications, “in the Intl. Conf. on Software Engineering.
Toronto, Ontario, Canada: IEEE Computer Society, May
2001, pp. 25–34.

[5] R. C. Bryce and A. M. Memo, “Test suite prioritization by
interaction coverage,” in Proceedings of The Workshop on
Domain-Specific Approaches to Software Test Automation
(DoSTA 2007); co-located with The 6th joint meeting of the
European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software
Engineering. Dubrovnik, Croatia: ACM, Sep. 2007, pp. 1–7.

[6] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and A.
G.Koru, “Prioritizing user-session-based test cases for web
application testing,” in the International Conference on
Software Testing, Verification and Validation. Lillehammer,
Norway: IEEE Computer Society, Apr. 2008, pp. 141–150.

[7] P. Brooks, B. Robinson, and A. M. Memon, “An initial
characterization of industrial graphical user interface
systems,” in Proceedings of the International Conference on
Software Testing, Verification and Validation, 2009, pp. 11–
20.

[8] L. White, “Regression testing of GUI event interactions,” in
Proceedings of the International Conference on Software
Maintenance. IEEE Computer Society, Nov. 1996, pp. 350–
358.

[9] “Web site test tools and site management tools,” accessed
on<http://www.softwareqatest.com/qatweb1.html>, accessed
onApr. 5, 2009.

[10] D. C. Kung, C.-H. Liu, and P. Hsia, “An object-oriented web
test model for testing web applications,” in The First Asia-
Pacific Conf.on Quality Software. Singapore: IEEE
Computer Society, Oct. 2000,pp. 111–120.

[11] W.Wang, S. Sampath, Y. Lei, and R. Kacker, “An
interaction-based test sequence generation approaches for
testing web applications, “in IEEE International Conference
on High Assurance Systems Engineering. Nanjing, China:
IEEE Computer Society, 2008, pp. 209–218.

[12] W. Halfond and A. Orso, “Improving test case generation for
web applications using automated interface discovery,” in
ESEC / 15.SIGSOFT Foundations of Software Engineering.
Dubrovnik, Croatia:ACM, Sep. 2007, pp. 145–154.

[13] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D.Ernst, “Finding bugs in dynamic web applications,”
in ISSTA ’08:Proceedings of the 2008 international

symposium on Software testing and analysis. Seattle, WA,
USA: ACM, Jul. 2008, pp. 261–272.

[14] N. Alshahwan and M. Harman, “Automated session data
repair for web application regression testing,” in IEEE
International Conferenceon Software Testing, Verification
and Validation. Lillehammer, Norway: IEEE Computer
Society, April 2008, pp. 298–307.

[15] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher II,
“Leveraging user session data to support web application
testing,” IEEE Trans.on Software Engineering, vol. 31, no. 3,
pp. 187–202, May 2005.

[16] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S.
Greenwald,“Applying concept analysis to user-session-based
testing of web applications,” IEEE Trans. on Software
Engineering, vol. 33,no. 10, pp. 643–658, Oct. 2007.

[17] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma,
“Regression testing in an industrial environment,”
Communications of theACM, vol. 41, no. 5, pp. 81–86, May
1988.

[18] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE Trans. on
Software Engineering, vol. 27, no. 10, pp. 929–948, Oct.
2001.

[19] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: A family of empirical studies,” IEEE Trans. On
Software Engineering, vol. 28, no. 2, pp. 159–182, Feb. 2002.

[20] D. Binkley, “Using semantic differencing to reduce the cost
of regression testing,” in the Intl. Conf. on Software
Maintenance. Orlando, Florida, USA: IEEE Computer
Society, Nov. 1992, pp.41–50.

[21] J. A. Jones and M. J. Harrold, “Test-suite reduction and
prioritization for modified condition / decision coverage,”
Trans. on Software Engineering, vol. 29, no. 3, pp. 195–209,
Mar. 2003.

[22] D. Jeffrey and N. Gupta, “Test case prioritization using
relevant slices,” in the International Computer Software and
Applications Conference. IEEE Computer Society, Sep.
2006, pp. 411–418.

[23] J. Lee and X. He, “A methodology for test selection,” Journal
of Systems and Software, vol. 13, no. 3, pp. 177–185, Nov.
1990.

[24] J. Offutt, J. Pan, and J. M. Voas, “Procedures for reducing the
size of coverage-based test sets,” in Intl. Conf. on Testing
Computer Software. Washington, DC, USA: SQA Press, Jun.
1995, pp. 111–123.

[25] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and S.
Ecott,“Automated oracle comparators for testing web
applications,” in the Intl. Symp. On Software Reliability
Engineering. Trollhattan, Sweden: IEEE Computer Society,
Nov. 2007, pp. 253–262.

[26] M. Grindal, J. Offutt, and S. Andler, “Combination testing
strategies: a survey,” Software Testing, Verification, and
Reliability, vol. 15, pp. 167–199, Mar. 2005.

[27] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault
interactions and implications for software testing,” IEEE
Trans.on Software Engineering, vol. 30, no. 6, pp. 418–421,
Oct. 2004.

[28] C. J. Colbourn, “Combinatorial aspects of covering arrays,”
Le Matematiche (Catania), vol. 58, pp. 121–167, 2004.

[29] Renée C. Bryce, Sreedevi Sampath, Atif M. Memon;
Developing a Single Model and Test Prioritization Strategies
for Event-Driven Software; January/February 2011 (vol. 37
no. 1); pp. 48-64



