
Graph Algorithms 

  Graphs are one of the unifying themes of computer science – an abstract representation which 

describes the organization of transportation systems, electrical circuits, human interactions, and 

telecommunication networks. That so many different structures can be modeled using a single 

formalism is a source of great power to the educated programmer. 

  In this tutorial, we focus on problems which require only an elementary knowledge of graph 

algorithms, specifically the appropriate use of graph data structures. Later on we will present graph 

traversal algorithms and problems relying on more advanced graph algorithms that find minimum 

spanning trees, shortest paths, and network flows.   

 

Flavor of Graphs 

A graph G = (V,E) is defined by a set of vertices V , and a set of edges E consisting of ordered or 

unordered pairs of vertices from V . In modeling a road network, the vertices may represent the cities 

or junctions, certain pairs of which are connected by roads/edges. In analyzing the source code of a 

computer program, the vertices may represent lines of code, with an edge connecting  lines x and y if 

y can be the next statement executed after x. In analyzing human interactions, the vertices typically 

represent people, with edges connecting pairs of related souls.  

  There are several fundamental properties of graphs which impact the choice of data structures used 

to represent them and algorithms available to analyze them. The first step in any graph problem is 

determining which flavor of graph you are dealing with -  

          • Undirected vs. Directed  : A graph G = (V,E) is undirected if edge (x, y) ∈ E implies that (y, 

x) is also in E. If not, we say that the graph is directed. Road networks between cities are typically 

undirected, since any large road has lanes going in both directions. Street networks within cities are 

almost always directed, because there are typically at least a few one -way streets lurking about. 



Program flow graphs are typically directed, because the execution flows from one line into the next 

and changes direction only at branches. Most graphs of graph-theoretic interest are undirected.   

 

          • Weighted vs. Unweighted  : In weighted graphs, each edge (or vertex) of G is assigned a 

numerical value, or weight. Typical application-specific edge weights for road networks might be the 

distance, travel time, or maximum capacity between x and y. In unweighted graphs, there is no cost 

distinction between various edges and vertices.   

The difference between weighted and unweighted graphs becomes particularly apparent in findi ng the 

shortest path between two vertices. For unweighted graphs, the shortest path must have the fewest 

number of edges, and can be found using the breadth-first search algorithm. Shortest paths in 

weighted graphs requires more sophisticated algorithms.   

 

          • Cyclic vs. Acyclic  : An acyclic graph does not contain any cycles. Trees are connected 

acyclic undirected graphs. Trees are the simplest interesting graphs, and inherently recursive 

structures since cutting any edge leaves two smaller trees.   

Directed acyclic graphs are called DAGs. They arise naturally in scheduling problems, where a 

directed edge (x, y) indicates that x must occur before y. An operation called topological sorting 

orders the vertices of a DAG so as to respect these precedence constraints. Topological sorting is 

typically the first step of any algorithm on a DAG.   

 

          • Simple vs. Non-simple : Certain types of edges complicate the task of working with graphs. 

A self-loop is an edge (x, x) involving only one vertex. An edge (x, y) is a multi-edge if it occurs more 

than once in the graph. Both of these structures require special care in implementing graph 

algorithms. Hence any graph which avoids them is called simple.   

 

          • Embedded vs. Topological  : A graph is embedded if the vertices and edges have been 

assigned geometric positions. Thus any drawing of a graph is an embedding, which may or may not 

have algorithmic significance.  

Occasionally, the structure of a graph is completely defined by the geometry of its embe dding. For 



example, if we are given a collection of points in the plane, and seek the minimum cost tour visiting 

all of them (i.e., the traveling salesman problem), the underlying topology is the complete graph 

connecting each pair of vertices. The weights  are typically defined by the Euclidean distance 

between each pair of points.   

Another example of topology from geometry arises in grids of points. Many problems on an n × m grid 

involve walking between neighboring points, so the edges are implicitly defined from the geometry.  

 

          • Implicit vs. Explicit  : Many graphs are not explicitly constructed and then traversed, but 

built as we use them. A good example is in backtrack search. The vertices of this implicit search 

graph are the states of the search vector, while edges link pairs of states which can be directly 

generated from each other. It is often easier to work with an implicit graph than explicitly constructing 

it before analysis.  

 

          • Labeled vs. Unlabeled  : In labeled graphs, each vertex is assigned a unique name or 

identifier to distinguish it from all other vertices. In unlabeled graphs, no such distinctions have been 

made.  

Most graphs arising in applications are naturally and meaningfully labeled, such as city names in a 

transportation network. A common problem arising on graphs is that of isomorphism testing, 

determining whether the topological structure of two graphs are in fact identical if we ignore any 

labels. Such problems are typically solved using backtracking, by trying t o assign each vertex in each 

graph a label such that the structures are identical.  

  

Source: 

http://www.learnalgorithms.in/# 


