
FUNCTIONS IN C PROGRAMMING

Every program in C has at least one function which is main(). Unlike Pascal

or Basic, C does not provide procedures, it uses functions to cater to both

requirements.

Functions are used to make a program modular and to avoid repetition of

code. Any piece of code which is often used in a program is a likely

candidate for being a function.

In C a function has the following structure :

<return type> function name (arguments list)

{

local variables;

code performing the necessary action

}

Let us look at a simple function which will display a message on the console.

Program 7.1

#include <stdio.h>

void print_message()

{

printf("Inside print_message function\n");

}

void main()

{

print_message();

printf("Back in the main program\n");

}

In the above program, main() is the entry point of the program, once program

execution begins, the control is transferred to the print_message() function.

Inside the function it prints the statement on the terminal and the control

returns to the main routine. After the function call the program execution will

continue at the point where the function call was executed.

The printf() and scanf() routines are functions too. But since these are part of

the C standard library, one just have to call them. Whenever we use

a printf() routine, execution is transferred to the printf() function which

performs the required task, then control is returned back to the calling

program.

If you do not want to return a value you must use the return type void, and the

return statement must not be present in the body of the function (or you can

just return void).

Note : If the return type of a function is omitted, then the C compiler assumes

that the function will return an integer. In case a function is returning an

integer value, it is a good programming practise to declare the return type

instead of omitting it. This improves the readability of a program.

When a function is declared the number of arguments passed to the function

and their names must also be indicated. The name chosen for an argument is

called its formal parameter name. Formal parameters must be declared inside

a function before they are used in the function body. One point to remember

is that variables defined inside a function are known as automatic variables

since they are automatically created each time the function is called and are

destroyed once the function is executed. Their values are local to the

function, they can be accessed only inside the function in which they are

defined and not by other functions.

Program 7.2

#include <stdio.h>

int square(number);

main()

{

int i;

int result;

i = 10;

result = square(i);

printf ("Square of %d is %d\n", i, result);

}

int square(n)

{

int n;

int temp;

temp = n*n;

return temp;

}

When functions return a value to the calling routine, a return() statement

needs to be used in the called function. Also when the function is declared we

must declare the return type. In the above program the value returned by the

function square is stored in the variable result in the calling program.

One can call a function from anywhere within a program. The best use of

functions is to organize a program into distinct parts. The function main() can

only contain calls to the various functions. The actual work of the program is

performed in the functions following main().

Function prototype

In C the function prototype has to be declared before a function is used. A

function prototype is information to the C compiler about the return type of a

function and the parameter types that a function expects. Usually all function

prototypes are declared at the start of a program.

Example:

int Min(int a, int b);

Scope of Function variables

Local variables

Local variables are local to a function. They are created everytime a function

is called and destroyed on return from that function. These variables cannot

be accessed outside a function.

Static variables

Static variables are declared by prefixing the keyword static to a variable

declaration. Unlike local variables these are not destroyed on return from a

function, they continue to exist and retain their value. These variables can be

accessed upon re-entering a function.

Global variables

Global variables are declared outside all functions. The value stored in global

variables is available to all functions within a program/application.

Recursive functions

Recursive functions are functions calling themselves repeatedly until a

certain condition is met. Recursion involves two conditions. First the problem

must be written in a recursive form, and second, the problem should have a

loop terminating statement. If the loop terminating is missing, then the

function goes into an endless loop.

A most common example of a program demonstrating recursion is calculation

of factorial of an interger number.

Program 7.3

#include <stdio.h>

main ()

{

int num;

long int factorial(int n); /* function prototype */

printf("Enter an integer value : ");

scanf("%d", &num);

printf("factorial of %d is %ld\n", num, factorial(num));

}

long int factorial(int n)

{

if (n <= 1)

return(1);

else

return(n * factorial(n-1));

}

Parithy
Typewritten Text
Source : http://www.peoi.org/Courses/Coursesen/cprog/frame7.html

	Program 7.1
	Program 7.2
	Function prototype
	Scope of Function variables
	Local variables
	Static variables
	Global variables

	Recursive functions
	Program 7.3

