FILE AND RECORD LOCKING

UNIX systems allow multiple processes to read and write the same file concurrently which
provides data sharing among processes. It also renders difficulty for any process in determining
when data in a file can be overridden by another process.
In some of the applications like a database manager, where no other process can write or read a
file while a process is accessing a database file. To overcome this drawback, UNIX and POSIX
systems support a file locking mechanism.
File locking is applicable only for regular files. It allows a process to impose a lock on a file
so that other processes cannot modify the file until it is unlocked by the process.
A process can impose a write lock or a read lock on either a portion of a file or an entire file.

The difference between write locks and read locks is that when a write lock is set, it prevents

other processes from setting any overlapping read or write locks on the locked region of a file.
On the other hand, when a read lock is set, it prevents other processes from setting any
overlapping write locks on the locked region of a file.

The intention of a write lock is to prevent other processes from both reading and writing the
locked region while the process that sets the lock is modifying the region. A write lock is also
known as an exclusive lock.

The use of a read lock is to prevent other processes from writing to the locked region while
the process that sets the lock is reading data from the region. Other processes are allowed to

lock and read data from the locked regions. Hence, a read lock is also called a shared lock.
3.2.1 Mandatory Lock

Mandatory locks are enforced by an operating system kernel.

If a mandatory exclusive lock is set on a file, no process can use the read or write system calls
to access data on the locked region.

If a mandatory shared lock is set on a region of a file, no process can use the write system call
to modify the locked region.

It is used to synchronize reading and writing of shared files by multiple processes: If a process
locks up a file, other processes that attempts to write to the locked regions are blocked until the

former process releases its lock.

Mandatory locks may cause problems: If a runaway process sets a mandatory exclusive lock on
a file and never unlocks it, no other processes can access the locked region of the file until
either the runaway process is killed or the system is rebooted.

System V.3 and V.4 support mandatory locks.

3.2.2 Advisory Lock

An advisory lock is not enforced by a kernel at the system call level.

This means that even though lock (read or write) may be set on a file, other processes can still
use the read or write APIs to access the file.

To make use of advisory locks, processes that manipulate the same file must cooperate such

that they follow this procedure for every read or write operation to the file:

a. Try to set a lock at the region to be accessed. If this fails, a process can either wait for
the lock request to become successful or go do something else and try to lock the file
again later.

b. After a lock is acquired successfully, read or write the locked region release the lock

c. The drawback of advisory locks are that programs that create processes to share files
must follow the above file locking procedure to be cooperative. This may be difficult to
control when programs are obtained from different sources.

All UNIX and POSIX systems support advisory locks.

UNIX System V and POSIX.I use the fcntl API for file locking. The prototype of the fcnt/ API
is:

#include<fcntl.h>

int fentl(int fdesc, int cmd flag, ...);

The fdesc argument is a file descriptor for a file to be processed. The cmd flag argument

defines which operation is to be performed.

cmd Flag Use
F SETLK Sets a file lock. Do not block if this cannot succeed immediately
F SETLKW Sets a file lock and blocks the calling process until the lock is acquired

F GETLK Queries as to which process locked a specified region of a file

For file locking, the third argument to fcnt/ is an address of a struct flock-typed variable.
This variable specifies a region of a file where the lock is to be set, unset, or queried. The

struct flock is declared in the <fcntl.h> as:

struct flock

{
short 1 type; // what lock to be set or to unlock file
short 1 whence; // a reference address for the next field
off t1 start; //offset from thel whence reference address
off t1 len; //how many bytes in the locked region
pid t1 pid; //PID of a process which has locked the file

The possible values of 1 _type are:

[type value Use

F RDLCK Sets a a read (shared) lock on a specified region

F WRLCK Sets a write (exclusive) lock on a specified region
F UNLCK Unlocks a specified region

The possible values of | whence and their uses are:

| whence value Use

SEEK CUR The [_start value is added to the current file pointer address.

SEEK CUR The ! start value is added to the current file pointer Use address

SEEK SET The [start value is added to byte 0 of the file

SEEK END The [_start value ts'added to the end (current size) of the file
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iv-unix-and-

shell-programming-10cs44-notes.pdf

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iv-unix-and-shell-programming-10cs44-notes.pdf

