
Exception Handling and Debugging

Any good program makes use of a language’s exception handling mechanisms. There is no

better way to frustrate an end-user then by having them run into an issue with your software and

displaying a big ugly error message on the screen, followed by a program crash. Exception

handling is all about ensuring that when your program encounters an issue, it will continue to

run and provide informative feedback to the end-user or program administrator. Any Java

programmer becomes familiar with exception handling on day one, as some Java code won’t

even compile unless there is some form of exception handling put into place via the try-catch-

finally syntax. Python has similar constructs to that of Java, and we’ll discuss them in this

chapter.

After you have found an exception, or preferably before your software is distributed, you should

go through the code and debug it in order to find and repair the erroneous code. There are

many different ways to debug and repair code; we will go through some debugging

methodologies in this chapter. In Python as well as Java, the assert keyword can help out

tremendously in this area. We’ll cover assert in depth here and learn the different ways that it

can be used to help you out and save time debugging those hard-to-find errors.

Exception Handling Syntax and Differences with Java

Java developers are very familiar with the try-catch-finally block as this is the main mechanism

that is used to perform exception handling. Python exception handling differs a bit from Java,

but the syntax is fairly similar. However, Java differs a bit in the way that an exception is thrown

in code. Now, realize that I just used the term throw…this is Java terminology. Python does not

throw exceptions, but instead it raises them. Two different terms which mean basically the same

thing. In this section, we’ll step through the process of handling and raising exceptions in Python

code, and show you how it differs from that in Java.

For those who are unfamiliar, I will show you how to perform some exception handling in the

Java language. This will give you an opportunity to compare the two syntaxes and appreciate

the flexibility that Python offers.

Listing 7-1. Exception Handling in Java

try {

// perform some tasks that may throw an exception

} catch (ExceptionType messageVariable) {

// perform some exception handling

} finally {

// execute code that must always be invoked

}

Now let’s go on to learn how to make this work in Python. Not only will we see how to handle

and raise exceptions, but you’ll also learn some other great techniques such as using assertions

later in the chapter.

Catching Exceptions

How often have you been working in a program and performed some action that caused the

program to abort and display a nasty error message? It happens more often than it should

because most exceptions can be caught and handled nicely. By nicely, I mean that the program

will not abort and the end user will receive a descriptive error message stating what the problem

is, and in some cases how it can be resolved. The exception handling mechanisms within

programming languages were developed for this purpose.

Listing 7-2. try-except Example

This function uses a try-except clause to provide a nice error

message if the user passes a zero in as the divisor

>>> from __future__ import division

>>> def divide_numbers(x, y):

... try:

... return x/y

... except ZeroDivisionError:

... return 'You cannot divide by zero, try again'

…

Attempt to divide 8 by 3

>>> divide_numbers(8,3)

2.6666666666666665

Attempt to divide 8 by zero

>>> divide_numbers(8, 0)

'You cannot divide by zero, try again'

Table 7-1 lists of all exceptions that are built into the Python language along with a description

of each. You can write any of these into an except clause and try to handle them. Later in this

chapter I will show you how you and raise them if you’d like. Lastly, if there is a specific type of

exception that you’d like to throw that does not fit any of these, then you can write your own

exception type object. It is important to note that Python exception handling differs a bit from

Java exception handling. In Java, many times the compiler forces you to catch exceptions, such

is known as checked exceptions. Checked exceptions are basically exceptions that a method

may throw while performing some task. The developer is forced to handle these checked

exceptions using a try/catch or a throws clause, otherwise the compiler complains. Python has

no such facility built into its error handling system. The developer decides when to handle

exceptions and when not to do so. It is a best practice to include error handling wherever

possible even though the interpreter does not force it.

Exceptions in Python are special classes that are built into the language. As such, there is a

class hierarchy for exceptions and some exceptions are actually subclasses of another

exception class. In this case, a program can handle the superclass of such an exception and all

subclassed exceptions are handled automatically. Table 7-1 lists the exceptions defined in the

Python language, and the indentation resembles the class hierarchy.

Table 7-1. Exceptions

Exception Description

BaseException This is the root exception for all others

GeneratorExit Raised by close() method of generators for terminating iteration

KeyboardInterrupt Raised by the interrupt key

SystemExit Program exit

Exception Root for all non-exiting exceptions

StopIteration Raised to stop an iteration action

StandardError Base class for all built-in exceptions

ArithmeticError Base for all arithmetic exceptions

FloatingPointError Raised when a floating-point operation fails

OverflowError Arithmetic operations that are too large

ZeroDivisionError Division or modulo operation with zero as divisor

AssertionError Raised when an assert statement fails

AttributeError Attribute reference or assignment failure

EnvironmentError An error occurred outside of Python

IOError Error in Input/Output operation

OSError An error occurred in the os module

EOFError input() or raw_input() tried to read past the end of a file

ImportError Import failed to find module or name

LookupError Base class for IndexError and KeyError

IndexError A sequence index goes out of range

KeyError Referenced a non-existent mapping (dict) key

MemoryError Memory exhausted

NameError Failure to find a local or global name

UnboundLocalError Unassigned local variable is referenced

ReferenceError Attempt to access a garbage-collected object

RuntimeError Obsolete catch-all error

NotImplementedError Raised when a feature is not implemented

SyntaxError Parser encountered a syntax error

IndentationError Parser encountered an indentation issue

TabError Incorrect mixture of tabs and spaces

SystemError Non-fatal interpreter error

TypeError Inappropriate type was passed to an operator or function

ValueError Argument error not covered by TypeError or a more precise error

Warning Base for all warnings

The try-except-finally block is used in Python programs to perform the exception-handling task.

Much like that of Java, code that may or may not raise an exception can be placed in the try

block. Differently though, exceptions that may be caught go into an except block much like the

Java catch equivalent. Any tasks that must be performed no matter if an exception is thrown or

not should go into the finally block. All tasks within the finally block are performed if an exception

is raised either within the except block or by some other exception. The tasks are also

performed before the exception is raised to ensure that they are completed. The finally block is

a great place to perform cleanup activity such as closing open files and such.

Listing 7-3. try-except-finally Logic

try:

 # perform some task that may raise an exception

except Exception, value:

 # perform some exception handling

finally:

 # perform tasks that must always be completed (Will be performed before

the exception is # raised.)

Python also offers an optional else clause to create the try-except-else logic. This optional code

placed inside the else block is run if there are no exceptions found in the block.

Listing 7-4. try-finally logic

try:

 # perform some tasks that may raise an exception

finally:

 # perform tasks that must always be completed (Will be performed before

the exception is # raised.)

The else clause can be used with the exception handling logic to ensure that some tasks are

only run if no exceptions are raised. Code within the else clause is only initiated if no exceptions

are thrown, and if any exceptions are raised within the else clause the control does not go back

out to the except. Such activities to place in inside an else clause would be transactions such as

a database commit. If several database transactions were taking place inside the try clause you

may not want a commit to occur unless there were no exceptions raised.

Listing 7-5. try-except-else logic:

try:

 # perform some tasks that may raise an exception

except:

 # perform some exception handling

else:

 # perform some tasks thatwill only be performed if no exceptions are

thrown

You can name the specific type of exception to catch within the except block, or you can

generically define an exception handling block by not naming any exception at all. Best practice

of course states that you should always try to name the exception and then provide the best

possible handling solution for the case. After all, if the program is simply going to spit out a

nasty error then the exception handling block is not very user friendly and is only helpful to

developers. However, there are some rare cases where it would be advantageous to not

explicitly refer to an exception type when we simply wish to ignore errors and move on. The

except block also allows us to define a variable to which the exception message will be

assigned. This allows us the ability to store that message and display it somewhere within our

exception handling code block. If you are calling a piece of Java code from within Jython and

the Java code throws an exception, it can be handled within Jython in the same manner as

Jython exceptions.

Listing 7-6. Exception Handling in Python

Code without an exception handler

>>> x = 10

>>> z = x / y

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

NameError: name 'y' is not defined

The same code with an exception handling block

>>> x = 10

>>> try:

... z = x / y

... except NameError, err:

... print "One of the variables was undefined: ", err

...

One of the variables was undefined: name 'y' is not defined

It is important to note that Jython 2.5.x uses the Python 2.5.x exception handling syntax. This

syntax will be changing in future releases of Jython. Take note of the syntax that is being used

for defining the variable that holds the exception. Namely, the except ExceptionType, value

statement syntax in Python and Jython 2.5 differs from that beyond 2.5. In Python 2.6, the

syntax changes a bit in order to ready developers for Python 3, which exclusively uses the new

syntax.

Listing 7-7. Jython and Python 2.5 and Prior

try:

 # code

except ExceptionType, messageVar:

 # code

Listing 7-8. Jython 2.6 (Not Yet Implemented) and Python 2.6 and Beyond

try:

 # code

except ExceptionType as messageVar:

 # code

We had previously mentioned that it was simply bad programming practice to not explicitly

name an exception type when writing exception handling code. This is true, however Python

provides us with another a couple of means to obtain the type of exception that was thrown. The

easiest way to find an exception type is to simply catch the exception as a variable as we’ve

discussed previously. You can then find the specific exception type by using the

type(error_variable) syntax if needed.

Listing 7-9. Determining Exception Type

In this example, we catch a general exception and then determine the type

later

>>> try:

... 8/0

... except Exception, ex1:

... 'An error has occurred'

...

'An error has occurred'

>>> ex1

ZeroDivisionError('integer division or modulo by zero',)

>>> type(ex1)

<type 'exceptions.ZeroDivisionError'>

>>>

There is also a function provided in the sys package known as sys.exc_info() that will provide us

with both the exception type and the exception message. This can be quite useful if we are

wrapping some code in a try-except block but we really aren’t sure what type of exception may

be thrown. Below is an example of using this technique.

Listing 7-10. Using sys.exc_info()

Perform exception handling without explicitly naming the exception type

>>> x = 10

>>> try:

... z = x / y

... except:

... print "Unexpected error: ", sys.exc_info()[0], sys.exc_info()[1]

...

Unexpected error: <type 'exceptions.NameError'> name 'y' is not defined

Sometimes you may run into a situation where it is applicable to catch more than one exception.

Python offers a couple of different options if you need to do such exception handling. You can

either use multiple except clauses, which does the trick and works well if you’re interested in

performing different tasks for each different exception that occurs, but may become too wordy.

The other preferred option is to enclose your exception types within parentheses and separated

by commas on your except statement. Take a look at the following example that portrays the

latter approach using Listing 7-6.

Listing 7-11. Handling Multiple Exceptions

Catch NameError, but also a ZeroDivisionError in case a zero is used in the

equation

>>> try:

... z = x/y

... except(NameError, ZeroDivisionError), err:

... "An error has occurred, please check your values and try again"

...

'An error has occurred, please check your values and try again'

Using multiple except clauses

>>> x = 10

>>> y = 0

>>> try:

... z = x / y

... except NameError, err1:

... print err1

... except ZeroDivisionError, err2:

... print 'You cannot divide a number by zero!'

...

You cannot divide a number by zero!

As mentioned previously, an exception is simply a class in Python. There are superclasses and

subclasses for exceptions. You can catch a superclass exception to catch any of the exceptions

that subclass that exception are thrown. For instance, if a program had a specific function that

accepted either a list or dict object, it would make sense to catch a LookupError as opposed to

finding a KeyError or IndexError separately. Look at the following example to see one way that

this can be done.

Listing 7-12. Catching a Superclass Exceptions

In the following example, we define a function that will return

a value from some container. The function accepts either lists

or dictionary objects. The LookupError superclass is caught

as opposed to checking for each of it's subclasses...namely KeyError and

IndexError.

>>> def find_value(obj, value):

... try:

... return obj[value]

... except LookupError, ex:

... return 'An exception has been raised, check your values and try

again'

...

Create both a dict and a list and test the function by looking for a value

that does

not exist in either container

>>> mydict = {'test1':1,'test2':2}

>>> mylist = [1,2,3]

>>> find_value(mydict, 'test3')

'An exception has been raised, check your values and try again'

>>> find_value(mylist, 2)

3

>>> find_value(mylist, 3)

'An exception has been raised, check your values and try again'

>>>

If multiple exception blocks have been coded, the first matching exception is the one that is

caught. For instance, if we were to redesign the find_value function that was defined in the

previous example, but instead raised each exception separately then the first matching

exception would be raised. . .the others would be ignored. Let’s see how this would work.

Listing 7-13. Catching the First Matching Exceptions

Redefine the find_value() function to check for each exception separately

Only the first matching exception will be raised, others will be ignored.

So in these examples, the except LookupError code is never run.

>>> def find_value(obj, value):

... try:

... return obj[value]

... except KeyError:

... return 'The specified key was not in the dict, please try again'

... except IndexError:

... return 'The specified index was out of range, please try again'

... except LookupError:

... return 'The specified key was not found, please try again'

...

>>> find_value(mydict, 'test3')

'The specified key was not in the dict, please try again'

>>> find_value(mylist, 3)

'The specified index was out of range, please try again'

>>>

The try-except block can be nested as deep as you’d like. In the case of nested exception

handling blocks, if an exception is thrown then the program control will jump out of the inner

most block that received the error, and up to the block just above it. This is very much the same

type of action that is taken when you are working in a nested loop and then run into a break

statement, your code will stop executing and jump back up to the outer loop. The following

example shows an example for such logic.

Listing 7-14. Nested Exception Handling Blocks

Perform some division on numbers entered by keyboard

try:

 # do some work

 try:

 x = raw_input ('Enter a number for the dividend: ')

 y = raw_input('Enter a number to divisor: ')

 x = int(x)

 y = int(y)

 except ValueError:

 # handle exception and move to outer try-except

 print 'You must enter a numeric value!'

 z = x / y

except ZeroDivisionError:

 # handle exception

 print 'You cannot divide by zero!'

except TypeError:

 print 'Retry and only use numeric values this time!'

else:

 print 'Your quotient is: %d' % (z)

In the previous example, we nested the different exception blocks. If the first ValueError were

raised, it would give control back to the outer exception block. Therefore, the ZeroDivisionError

and TypeError could still be raised. Otherwise, if those last two exceptions are not thrown then

the tasks within the else clause would be run.

As stated previously, it is a common practice in Jython to handle Java exceptions. Oftentimes

we have a Java class that throws exceptions, and these can be handled or displayed in Jython

just the same way as handling Python exceptions.

Listing 7-15. Handling Java Exceptions in Jython

// Java Class TaxCalc

public class TaxCalc {

 public static void main(String[] args) {

 double cost = 0.0;

 int pct = 0;

 double tip = 0.0;

 try {

 cost = Double.parseDouble(args[0]);

 pct = Integer.parseInt(args[1]);

 tip = (cost * (pct * .01));

 System.out.println("The total gratutity based on " + pct + " percent

would be " + tip);

 System.out.println("The total bill would be " + (cost + tip));

 } catch (NumberFormatException ex){

 System.out.println("You must pass number values as arguments.

 Exception: " + ex);

 } catch (ArrayIndexOutOfBoundsException ex1){

 System.out.println("You must pass two values to this utility. " +

 "Format: TaxCalc(cost, percentage) Exception: " + ex1);

 }

 }

}

Using Jython:

Now lets bring the TaxCalc Java class into Jython and use it

>>> import TaxCalc

>>> calc = TaxCalc()

pass strings within a list to the TaxCalc utility and the Java exception

will be thrown

>>> vals = ['test1','test2']

>>> calc.main(vals)

You must pass number values as arguments. Exception:

java.lang.NumberFormatException: For input string: "test1"

Now pass numeric values as strings in a list, this works as expected

(except for the bad

rounding)

>>> vals = ['25.25', '20']

>>> calc.main(vals)

The total gratutity based on 20 percent would be 5.050000000000001

The total bill would be 30.3

You can also throw Java exceptions in Jython by simply importing them first and then using then

raising them just like Python exceptions.

Raising Exceptions

Often you will find reason to raise your own exceptions. Maybe you are expecting a certain type

of keyboard entry, and a user enters something incorrectly that your program does not like. This

would be a case when you’d like to raise your own exception. The raise statement can be used

to allow you to raise an exception where you deem appropriate. Using the raise statement, you

can cause any of the Python exception types to be raised, you could raise your own exception

that you define (discussed in the next section). The raise statement is analogous to the throw

statement in the Java language. In Java we may opt to throw an exception if necessary.

However, Java also allows you to apply a throws clause to a particular method if an exception

may possibly be thrown within instead of using try-catch handler in the method. Python does not

allow you do perform such techniques using the raise statement.

Listing 7-16. raise Statement Syntax

raise ExceptionType or String[, message[, traceback]]

As you can see from the syntax, using raise allows you to become creative in that you could use

your own string when raising an error. However, this is not really looked upon as a best practice

as you should try to raise a defined exception type if at all possible. You can also provide a

short message explaining the error. This message can be any string. Let’s take a look at an

example.

Listing 7-17. raising Exceptions Using Message

>>> raise Exception("An exception is being raised")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

Exception: An exception is being raised

>>> raise TypeError("You've specified an incorrect type")

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: You've specified an incorrect type

Now you’ve surely seen some exceptions raised in the Python interpreter by now. Each time an

exception is raised, a message appears that was created by the interpreter to give you feedback

about the exception and where the offending line of code may be. There is always a traceback

section when any exception is raised. This really gives you more information on where the

exception was raised. Lastly, let’s take a look at raising an exception using a different format.

Namely, we can use the format raise Exception, “message”.

Listing 7-18. Using the raise Statement with the Exception, “message” Syntax

>>> raise TypeError,"This is a special message"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

TypeError: This is a special message

Defining Your Own Exceptions

You can define your own exceptions in Python by creating an exception class. You simply

define a class that inherits from the base Exception class. The easiest defined exception can

simply use a pass statement inside the class. Exception classes can accept parameters using

the initializer, and return the exception using the __str__ method. Any exception you write

should accept a message. It is also a good practice to name your exception giving it a suffix of

Error if the exception is referring to an error of some kind.

Listing 7-19. Defining a Basic Exception Class

class MyNewError(Exception):

 pass

This example is the simplest type of exception you can create. This exception that was created

above can be raised just like any other exception now.

raise MyNewError("Something happened in my program")

A more involved exception class may be written as follows.

Listing 7-20. Exception Class Using Initializer

class MegaError(Exception):

 """ This is raised when there is a huge problem with my program"""

 def __init__(self, val):

 self.val = val

 def __str__(self):

 return repr(self.val)

Issuing Warnings

Warnings can be raised at any time in your program and can be used to display some type of

warning message, but they do not necessarily cause execution to abort. A good example is

when you wish to deprecate a method or implementation but still make it usable for

compatibility. You could create a warning to alert the user and let them know that such methods

are deprecated and point them to the new definition, but the program would not abort. Warnings

are easy to define, but they can be complex if you wish to define rules on them using filters.

Warning filters are used to modify the behavior of a particular warning. Much like exceptions,

there are a number of defined warnings that can be used for categorizing. In order to allow

these warnings to be easily converted into exceptions, they are all instances of the Exception

type. Remember that exceptions are not necessarily errors, but rather alerts or messages. For

instance, the StopIteration exception is raised by a program to stop the iteration of a loop…not

to flag an error with the program.

To issue a warning, you must first import the warnings module into your program. Once this has

been done then it is as simple as making a call to the warnings.warn() function and passing it a

string with the warning message. However, if you’d like to control the type of warning that is

issued, you can also pass the warning class. Warnings are listed in Table 7-2.

Listing 7-21. Issuing a Warning

Always import the warnings module first

import warnings

A couple of examples for setting up warnings

warnings.warn("this feature will be deprecated")

warnings.warn("this is a more involved warning", RuntimeWarning)

Using A Warning in a Function

Suppose that use of the following function has been deprecated,

warnings can be used to alert the function users

The following function calculates what the year will be if we

add the specified number of days to the current year. Of course,

this is pre-Y2K code so it is being deprecated. We certainly do not

want this code around when we get to year 3000!

>>> def add_days(current_year, days):

... warnings.warn("This function has been deprecated as of version x.x",

DeprecationWarning)

... num_years = 0

... if days > 365:

... num_years = days/365

... return current_year + num_years

...

Calling the function will return the warning that has been set up,

but it does not raise an error...the expected result is still returned.

>>> add_days(2009, 450)

__main__:2: DeprecationWarning: This function has been deprecated as of

version x.x

2010

Table 7-2. Python Warning Categories

Warning Description

Warning Root warning class

UserWarning A user-defined warning

DeprecationWarning Warns about use of a deprecated feature

SyntaxWarning Syntax issues

RuntimeWarning Runtime issues

FutureWarning Warns that a particular feature will be changing in a future release

Importing the warnings module into your code gives you access to a number of built-in warning

functions that can be used. If you’d like to filter a warning and change its behavior then you can

do so by creating a filter. Table 7-3 lists functions that come with the warnings module.

Table 7-3. Warning Functions

Function Description

warn(message[, category[,

stacklevel]])

Issues a warning. Parameters include a message string, the

optional category of warning, and the optional stack level that

tells which stack frame the warning should originate from,

usually either the calling function or the source of the function

itself.

warn_explicit(message,

category, filename, lineno[,

module[, registry]])

This offers a more detailed warning message and makes

category a mandatory parameter. filename, lineno, and module

tell where the warning is located. registry represents all of the

current warning filters that are active.

showwarning(message,

category, filename, lineno[,

file])

Gives you the ability to write the warning to a file.

formatwarning(message,

category, filename, lineno)
Creates a formatted string representing the warning.

simplefilter(action[, category[,

lineno[, append]]])

Inserts simple entry into the ordered list of warnings filters.

Regular expressions are not needed for simplefilter as the filter

always matches any message in any module as long as the

category and line number match. filterwarnings() described

below uses a regular expression to match against warnings.

resetwarnings() Resets all of the warning filters.

filterwarnings(action[,

message[, category[, module[,

lineno[, append]]]]])

This adds an entry into a warning filter list. Warning filters

allow you to modify the behavior of a warning. The action in

the warning filter can be one from those listed in Table 7-4,

message is a regular expression, category is the type of a

warning to be issued, module can be a regular expression,

lineno is a line number to match against all lines, append

specifies whether the filter should be appended to the list of all

filters.

Table 7-4. Python Filter Actions

Filter Actions

‘always’ Always print warning message

‘default’ Print warning once for each location where warning occurs

‘error’ Converts a warning into an exception

‘ignore’ Ignores the warning

‘module’ Print warning once for each module in which warning occurs

‘once’ Print warning only one time

Let’s take a look at a few ways to use warning filters in the examples below.

Listing 7-22. Warning Filter Examples

Set up a simple warnings filter to raise a warning as an exception

>>> warnings.simplefilter('error', UserWarning)

>>> warnings.warn('This will be raised as an exception')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "/Applications/Jython/jython2.5.1rc2/Lib/warnings.py", line 63, in

warn

 warn_explicit(message, category, filename, lineno, module, registry,

 File "/Applications/Jython/jython2.5.1rc2/Lib/warnings.py", line 104, in

warn_explicit

 raise message

UserWarning: This will be raised as an exception

Turn off all active filters using resetwarnings()

>>> warnings.resetwarnings()

>>> warnings.warn('This will not be raised as an exception')

__main__:1: UserWarning: This will not be raised as an exception

Use a regular expression to filter warnings

In this case, we ignore all warnings containing the word “one”

>>> warnings.filterwarnings('ignore', '.*one*.',)

>>> warnings.warn('This is warning number zero')

__main__:1: UserWarning: This is warning number zero

>>> warnings.warn('This is warning number one')

>>> warnings.warn('This is warning number two')

__main__:1: UserWarning: This is warning number two

>>>

There can be many different warning filters in use, and each call to the filterwarnings() function

will append another warning to the ordered list of filters if so desired. The specific warning is

matched against each filter specification in the list in turn until a match is found. In order to see

which filters are currently in use, issue the command print warnings.filters. One can also specify

a warning filter from the command line by use of the –W option. Lastly, all warnings can be reset

to defaults by using the resetwarnings() function.

It is also possible to set up a warnings filter using a command-line argument. This can be quite

useful for filtering warnings on a per-script or per-module basis. For instance, if you are

interested in filtering warnings on a per-script basis then you could issue the -W command line

argument while invoking the script.

Listing 7-23. -W command-line option

-Waction:message:category:module:lineno

Listing 7-24. Example of using W command line option

Assume we have the following script test_warnings.py

and we are interested in running it from the command line

import warnings

def test_warnings():

 print "The function has started"

 warnings.warn("This function has been deprecated", DeprecationWarning)

 print "The function has been completed"

if __name__ == "__main__":

 test_warnings()

Use the following syntax to start and run jython as usual without

filtering any warnings

jython test_warnings.py

The function has started

test_warnings.py:4: DeprecationWarning: This function has been deprecated

 warnings.warn("This function has been deprecated", DeprecationWarning)

The function has been completed

Run the script and ignore all deprecation warnings

jython -W "ignore::DeprecationWarning::0" test_warnings.py

The function has started

The function has been completed

Run the script one last time and treat the DeprecationWarning

as an exception. As you see, it never completes

jython -W "error::DeprecationWarning::0" test_warnings.py

The function has started

Traceback (most recent call last):

 File "test_warnings.py", line 8, in <module>

 test_warnings()

 File "test_warnings.py", line 4, in test_warnings

 warnings.warn("This function has been deprecated", DeprecationWarning)

 File "/Applications/Jython/jython2.5.1rc2/Lib/warnings.py", line 63, in

warn

 warn_explicit(message, category, filename, lineno, module, registry,

 File "/Applications/Jython/jython2.5.1rc2/Lib/warnings.py", line 104, in

warn_explicit

 raise message

DeprecationWarning: This function has been deprecated

Warnings can be very useful in some situations. They can be made as simplistic or

sophisticated as need be.

Assertions and Debugging

Debugging can be an easy task in Python via use of the assert statement. In CPython, the

__debug__ variable can also be used, but this feature is currently not usable in Jython as there

is no optimization mode for the interpreter. . Assertions are statements that can print to indicate

that a particular piece of code is not behaving as expected. The assertion checks an expression

for a True or False value, and if it evaluates to False in a Boolean context then it issues an

AssertionError along with an optional message. If the expression evaluates to True then the

assertion is ignored completely.

assert expression [, message]

By effectively using the assert statement throughout your program, you can easily catch any

errors that may occur and make debugging life much easier. Listing 7-25 will show you the use

of the assert statement.

Listing 7-25. Using assert

The following example shows how assertions are evaluated

>>> x = 5

>>> y = 10

>>> assert x < y, "The assertion is ignored"

>>> assert x > y, "The assertion raises an exception"

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

AssertionError: The assertion raises an exception

Use assertions to validate parameters# Here we check the type of each

parameter to ensure

that they are integers

>>> def add_numbers(x, y):

... assert type(x) is int, "The arguments must be integers, please check

the first argument"

... assert type(y) is int, "The arguments must be integers, please check

the second argument"

... return x + y

...

When using the function, AssertionErrors are raised as necessary

>>> add_numbers(3, 4)

7

>>> add_numbers('hello','goodbye')

Traceback (most recent call last):

 File "<stdin>", line 1, in <module>

 File "<stdin>", line 2, in add_numbers

AssertionError: The arguments must be integers, please check the first

argument

Context Managers

Ensuring that code is written properly in order to manage resources such as files or database

connections is an important topic. If files or database connections are opened and never closed

then our program could incur issues. Often times, developers elect to make use of the try-finally

blocks to ensure that such resources are handled properly. While this is an acceptable method

for resource management, it can sometimes be misused and lead to problems when exceptions

are raised in programs. For instance, if we are working with a database connection and an

exception occurs after we’ve opened the connection, the program control may break out of the

current block and skip all further processing. The connection may never be closed in such a

case. That is where the concept of context management becomes an important new feature in

Jython. Context management via the use of the with statement is new to Jython 2.5, and it is a

very nice way to ensure that resources are managed as expected.

In order to use the with statement, you must import from __future__. The with statement

basically allows you to take an object and use it without worrying about resource management.

For instance, let’s say that we’d like to open a file on the system and read some lines from it. To

perform a file operation you first need to open the file, perform any processing or reading of file

content, and then close the file to free the resource. Context management using the with

statement allows you to simply open the file and work with it in a concise syntax.

Listing 7-26. Python with Statement Example

Read from a text file named players.txt

>>> from __future__ import with_statement

>>> with open('players.txt','r') as file:

... x = file.read()

...

>>> print x

Sports Team Management

Josh – forward

Jim – defense

In this example, we did not worry about closing the file because the context took care of that for

us. This works with object that extends the context management protocol. In other words, any

object that implements two methods named __enter__() and __exit__() adhere to the context

management protocol. When the with statement begins, the __enter__() method is executed.

Likewise, as the last action performed when the with statement is ending, the__exit__() method

is executed. The __enter__() method takes no arguments, whereas the __exit__() method takes

three optional arguments type, value, and traceback. The __exit__() method returns a True or

False value to indicate whether an exception was thrown. The as variable clause on the with

statement is optional as it will allow you to make use of the object from within the code block. If

you are working with resources such as a lock then you may not need the optional clause.

If you follow the context management protocol, it is possible to create your own objects that can

be used with this technique. The __enter__() method should create whatever object you are

trying to work if needed.

Listing 7-27. Creating a Simple Object That Follows Context Management Protocol

In this example, my_object facilitates the context management protocol

as it defines an __enter__ and __exit__ method

class my_object:

 def __enter__(self):

 # Perform setup tasks

 return object

 def __exit__(self, type, value, traceback):

 # Perform cleanup

If you are working with an immutable object then you’ll need to create a copy of that object to

work with in the __enter__() method. The __exit__() method on the other hand can simply

return False unless there is some other type of cleanup processing that needs to take place. If

an exception is raised somewhere within the context manager, then __exit__() is called with

three arguments representing type, value, and traceback. However, if there are no exceptions

raised then __exit__() is passed three None arguments. If __exit__() returns True, then any

exceptions are “swallowed” or ignored, and execution continues at the next statement after the

with-statement.

Summary

In this chapter, we discussed many different topics regarding exceptions and exception handling

within a Python application. First, you learned the exception handling syntax of the try-except-

finally code block and how it is used. We then discussed why it may be important to raise your

own exceptions at times and how to do so. That topic led to the discussion of how to define an

exception and we learned that in order to do so we must define a class that extends the

Exception type object.

After learning about exceptions, we went into the warnings framework and discussed how to

use it. It may be important to use warnings in such cases where code may be deprecated and

you want to warn users, but you do not wish to raise any exceptions. That topic was followed by

assertions and how assertion statement can be used to help us debug our programs. Lastly, we

touched upon the topic of context managers and using the with statement that is new in Jython

2.5.

Source:

http://www.jython.org/jythonbook/en/1.0/ExceptionHandlingDebug.html

