
cl(int j) { i=j; }

int get_i() { return i; }

};

Here, the constructor defined by cl requires one parameter. This implies that any array declared

of this type must be initialized. That is, it precludes this array declaration: cl a[9]; // error,

constructor requires initializers The reason that this statement isn't valid (as cl is currently

defined) is that it implies that cl has a parameterless constructor because no initializers are

specified. However, as it stands, cl does not have a parameterless constructor. Because there is

no valid constructor that corresponds to this declaration, the compiler will report an error.

To solve this problem, you need to overload the constructor, adding one that takes no

parameters, as shown next. In this way, arrays that are initialized and those that are not are both

allowed.

class cl {

int i;

public:

cl() { i=0; } // called for non-initialized arrays

cl(int j) { i=j; } // called for initialized arrays

int get_i() { return i; }

};

Given this class, both of the following statements are permissible:

cl a1[3] = {3, 5, 6}; // initialized

cl a2[34]; // uninitialized

DYNAMIC OBJECTS AND POINTERS TO OBJECTS IN CPP

A special case situation occurs if you intend to create both initialized and uninitialized arrays

of objects. Consider the following class.

class cl {

int i;

public:

#include <iostream>

using namespace std;

class cl {

int i;

public:

cl(int j) { i=j; }

int get_i() { return i; }

};

int main()

{

cl ob(88), *p;

p = &ob; // get address of ob

cout << p->get_i(); // use -> to call get_i()

return 0;

}

As you know, when a pointer is incremented, it points to the next element of its type.
For

example, an integer pointer will point to the next integer. In general, all pointer arithme
tic is

relative to the base type of the pointer. (That is, it is relative to the type of data that the poin
ter

is declared as pointing to.) The same is true of pointers to objects.

For example, this program uses a pointer to access all three elements of array ob after being

assigned ob's starting address:

#include <iostream>

using namespace std;

class cl {

int i;

public:

cl() { i=0; }

cl(int j) { i=j; }

int get_i() { return i; }

};

Pointers to Objects

Just as you can have pointers to other types of variables, you can have pointers to objects.

When accessing members of a class given a pointer to an object, use the arrow (–>) operator

instead of the dot operator.

int main()

{

cl ob[3] = {1, 2, 3}

cl *p;

int i;

p = ob; // get start of array

for(i=0; i<3; i++) {

cout << p->get_i() << "\n";

p++; // point to next object

}

return 0;

}

You can assign the address of a public member of an object to a pointer and then access that

member by using the pointer. For example, this is a valid C++ program that displays the

number 1 on the screen:

#include <iostream>

using namespace std;

class cl {

public:

int i;
cl(int j) { i=j; }

};

int main()

{

cl ob(1);

int *p;

p = &ob.i; // get address of ob.i

cout << *p; // access ob.i via p

return 0;

}
Because p is pointing to an integer, it is declared as an integer pointer. It is irrelevant that i is a

member of ob in this situation.

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iii-object-oriented-programming-with-c-10cs36-notes.pdf

