Lecture Overview

- Piano Fingering
- Structural DP (trees)
- Vertex Cover & Dominating Set
- Beyond: treewidth, planar graphs, folding

Readings

CLRS 15

Review:

5 easy steps for DP

1. subproblems (define & count)
2. guessing (what & count)
3. relation (the true test)
4. DP (put pieces together)
5. original problem

*2 kinds of guessing:

A. in 3, guess which other subproblems to use (used by every DP except Fibonacci)

B. in 1, create more subproblems to guess more structure of solution (used by knapsack DP)

- effectively report many solutions to subproblems.
- lets parent subproblem know features of solution.
Piano fingering:

[Parncutt, Sloboda, Clarke, Rackallio, Desain, 1997]
[Hart, Bosch, Tsai 2000]
[Al Kasimi, Nichols, Raphael 2007] etc.

- given musical piece to play, say sequence of (single) notes with right hand
- metric \(d(f, p, g, q) \) of difficulty going from note \(p \) with finger \(f \) to note \(q \) with finger \(g \)

 e.g., \(1 < f < g \) \& \(p > q \) \implies \text{uncomfortable}
 stretch rule: \(p \ll q \) \implies \text{uncomfortable}
 legato (smooth) \implies \infty \text{ if } f = g
 weak-finger rule: prefer to avoid \(g \in \{4, 5\} \)
 \(3 \rightarrow 4 \) \& \(4 \rightarrow 3 \) annoying \(\sim \) etc.

First Attempt:

1. subproblem = min difficulty for suffix notes[\(i : \)]
2. guessing = finger \(f \) for first note[\(i \)]
3. \(DP[i] = \min(DP[i + 1] + d(\text{note}[i], f, \text{note}[i + 1], ?) \text{ for } f \cdots) \)
 \(\rightarrow \) not enough information

1. subproblem = min difficulty for suffix notes[\(i : \)] given finger \(f \) on first note[\(i \)]
2. guessing = finger \(g \) for next note[\(i + 1 \)]
3. \(DP[\text{inf}] = \min(DP[i + 1, g] + d(\text{note}[i], f, \text{note}[i + 1], g) \text{ for } g \in \text{range}(F)) \)
 \(\leftarrow \# \text{ fingers} = 5 \text{ for humans} \)
 \(DP[n, f] = \phi \)
4. \(F n \) subproblems, \(F \) choices per subproblem \(\implies O(F^2n) \) time
5. \(\min(DP[\phi, f] \text{ for } f \in \text{range}(F)) \)
Dynamic Programming IV

Structural DP:
Follow combinatorial structure other than a (few)sequence(s) (by analogy to structural vs. regular induction)
* for DP on trees, useful subproblem is subtree rooted at vertex v, for all v

![Figure 1: DP on Trees](image)

Vertex Cover:
Find minimum set of vertices (cover) such that every edge is covered on \(\geq 1 \) end

- NP-complete in general graphs
- polynomial for trees:
 1. subproblem = min. cover for subtree rooted at v
 \(\Rightarrow \) n subproblems
 2. guessing = is v in cover?

![Figure 2: Vertex Cover](image)
Dynamic Programming IV

- \(\implies \) 2 choices
- YES \(\implies \) cover children edges
 \(\implies \) left with children subtrees
- NO \(\implies \) all children must be in cover
 \(\implies \) left with grandchildren subtrees

3. \(\text{DP}[v] = \min(1 + \sum \text{DP}[c] \text{ for } c \text{ in children}[v]) \quad \text{YES} \)
 \(\quad \text{len(children)} + \sum \text{DP}[g] \text{ for } g \text{ in grandchildren}(v)) \quad \text{NO} \)

4. time = \(O(n) \)

5. \(\text{DP[root]} \)

Dominating set:

Find minimum set of vertices such that every vertex is in or adjacent to set
- again NP-complete in graphs, polynomial on trees.

[material below covered in recitation]

1. subproblem = min. dom. for subtree rooted at \(v \)

2. guessing = is \(v \) in dom. set?
 - YES \(\implies \) dominate children
 - NO \(\implies \) must put some child in dom. set
 \(\implies \) dominate that child’s children

3. \(\text{DP}[v] = \min(1 + \sum (\text{DP}'[c] \text{ for } c \text{ in children}[v]) \quad \text{YES} \)
 \(\quad \text{but } c \text{ is already dominated } \cdots \text{ diff. subprob} \)
 \(1 + \sum \text{DP}(c) \text{ for } c \neq d \text{ in children}[v]) \quad \text{NO} \)
 \(+ \sum (\text{DP}'[g] \text{ for } g \text{ in children}[d])) \quad \text{NO} \)
 \(\quad \text{again already dominated } \sim \text{ different subprob} \)
 \(\quad - \text{guessing of the second type (B)} \)
 \(\quad \text{for } d \text{ in children}[c] \quad \leftarrow \text{guess child } e \text{ set A} \)

1’. subproblem ’ = min. dom. for subtree rooted at \(v \) given that \(v \) dominated already
(by parent subproblem)
\(\implies 2n \) subproblems total

3’. \(\text{DP}'[v] = \min(1 + \sum \text{DP}'[c] \text{ for } c \text{ in children}[v]), \quad \text{YES} \)
(\sum \text{DP}[c] \text{ for } c \text{ in children}[v]) \quad \text{NO} \)

4. time = \(O(\sum \text{deg}(v)) = O(E) = O(n) \)

5. \(\text{DP[root]} \)
Beyond:

Treewidth:

Many graphs are “thick trees” with reasonable “thickness” (\(\sim 7 \) e.g.).

- Most problems that are NP-complete in general can be solved in such graphs via DP

Planar Graphs:

Graphs often noncrossing in plane

![Planar Graphs](image)

Figure 3: Planar Graphs

- divide planar graph into BFS levels: see Figure 3
- throw away every kth level (e.g., \(k = 3 \)) starting from levels \(\phi, 1, \cdots, k - 1 \) (guess)
- in all cases, remaining graph is a “thick tree” of thickness \(O(k) \)
 \(\implies \) can solve this subproblem in poly-time
- can combine these solutions to solve original problem not optimally, but within \(1 + 1/k \) factor of optimal \(\forall \) constants \(k \)

Folding polygons into polyhedra:

[Metamorphosis of the Cube video]

- DP on substrings of cyclic sequence (polygon)