Dynamic Programming Il

Lecture Overview

e Review of big ideas & examples so far
e Bottom-up implementation
e Longest common subsequence

e Parent pointers for guesses

Readings
CLRS 15

Summary

* DP &~ “controlled brute force”
* DP = guessing + recursion + memoization

* DP =~ dividing into reasonable # subproblems whose solutions relate - acyclicly - usually
via guessing parts of solution.

* time = § subproblems X time/subproblem

treating recursive calls as O(1)

e essentially an amortization

e count each subproblem only once; after first time, costs O(1) via memoization

Parithy
Typewritten Text
Dynamic Programming II

Dynamic Programming Il

Examples: Fibonacci Shortest Paths Crazy Eights
subprobs: fib(k) (s, t)Vs, k <n trick(i) = longest
0<k<n = min path s — ¢ trick from card(i)
using < k edges
subprobs: ©(n) 0(V?) O(n)
guessing: none edge from s, if any next card j
f choices: 1 deg(s) n—1
relation: = fib(k — 1) = min{d;_1(s,t)} = 1 + max(trick(j))
+ fib(k —2) w{w(s,v)+ 0k_1(v,t) fori < j<nif
| ve Adj[s]} match(cli], c[j])
time/subpr: O(1) O(1 + deg(s)) O(n —1)
DP time: O(n) O(VE) O(n?)
orig. prob: fib(n) On—1(s,t) max{trick(i), 0 <i < n}
extra time: O(1) O(1) O(n)

Bottom-up implementation of DP:

alternative to recursion

e subproblem dependencies form DAG (see Figure (1))
e imagine topological sort

e iterate through subproblems in that order
—> when solving a subproblem, have already solved all dependencies

e often just: “solve smaller subproblems first”

QA

Figure 1: DAG

Example.

Fibonacci:

for k in range(n + 1): fib[k] = - --
Shortest Paths:

for k in range(n): for v in V : dlk,v,t] = ---
Crazy Eights:

for 7 in reversed(range(n)): trick[i] = - --

Parithy
Typewritten Text
Dynamic Programming II

Dynamic Programming I

e 10 recursion for memoized tests
— faster in practice

e building DP table of solutions to all subprobs. can often optimize space:

— Fibonacci: PS6
— Shortest Paths: re-use same table V&

Longest common subsequence: (LCS)

AK.A. edit distance, diff, CVS/SVN, spellchecking, DNA comparison, plagiarism, detec-
tion, etc.
Given two strings/sequences = & y, find longest common subsequence LCS(x,y) sequential

but not necessarily contiguous

eeg HIEROGLYPHOLOGYvs. MICHAELANGELO
common subsequence is Hello

e equivalent to “edit distance” (unit costs): § character insertions/deletions to transform

r—y
e brute force: try all 2%l subsequences of x = ©(21l. | y |) time

e instead: DP on two sequences simultaneously

* Useful subproblems for strings/sequences x:

e suffixes x[i :

e prefixes z[: i
The suffixes and prefixes are O(| z |)

e substrings z[i : j] O(| = |*)
Idea: Combine such subproblems for x & y (suffixes and prefixes work)

LCS DP

e subproblem c(i,j) =| LCS(z[i :],y[j:]) | for 0 <i,j <mn
= ©O(n?) subproblems
- original problem = ¢[0, 0]

e idea: either z[i] = y[j] part of LCS or not = either z[i] or y[j] (or both) not in
LCS (with anyone)

e guess: drop z[i] or y[j]? (2 choices)

Parithy
Typewritten Text
Dynamic Programming II

Dynamic Programming |l

e relation among subproblems:

if z[i] = ylj] : e(i,j) =14+c(i+1,7+1)
(otherwise z[i] or y[j] unused ~ can’t help)
else: c(i,7) = max{c(i+ 1,7),c(i,5 + 1)}
S—— ——
z[i]out y[jlout
base cases: ¢(| z |,j) =c(i,| y |) =
= ©O(1) time per subproblem
= O(n?) total time for DP

e DP table: see Figure

&
<

i T l_' if x[i] # y[]]
"115‘ if x[i] = y[j]

[-linear space via antidiagonal order yﬂ///,]

v X

Figure 2: DP Table

e recursive DP:

def LCS(z,y):
seen = { }
def ¢(i,7):
if i > len(z)orj > len(y) : return¢g
if (4,7) not in seen:
if i) == yljl:
seenft,jl =1+c(i+1,7+1)
else:
seen[i, j] = max(c(i + 1,7),c(i,j + 1))
return seenli, j]
return ¢(0,0)

Parithy
Typewritten Text

Parithy
Typewritten Text
Dynamic Programming II

Dynamic Programming I

e bottom-up DP:

def LCS(z,y):
c={}

for ¢ in range(len(x)):

cli, len(y)] = ¢
for j in range(len(y)):
cllen(z), j] = ¢

for i in reversed(range(len(z))):
for j in reversed(range(len(y))):

if afi] == ylj]:
cli,jl=14¢c[i+1,7+1]
else:

cli, j] = max(cli + 1, j], ¢[i, j + 1])
return ¢[0, 0]

Recovering LCS: [material covered in recitation]

e to get LCS, not just its length, store parent pointers (like shortest paths) to remember
correct choices for guesses:

if z[i] = yj]:
cli,j]=14¢[i+ 1,7 +1]
parent[i,j] = (i + 1,5+ 1)
else:
if c[i +1,7] > cfi, 7+ 1)
clirj] = cfi +1,7]
parent[i, j] = (i + 1, j)
else:
cli,j] = cli, 7 + 1]
parent[i, j] = (i,7 + 1)

e ...and follow them at the end:

les =[]
here = (0,0)
while clhere]:

i 2fi] == ylj]:
les.append(x[i))
here = parent[here]

Source: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-
algorithms-spring-2008/lecture-notes/

5

Parithy
Typewritten Text
Source: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-spring-2008/lecture-notes/

Parithy
Typewritten Text

Parithy
Typewritten Text
Dynamic Programming II

