Dynamic Programming |

Lecture Overview
e Fibonacci Warmup
e Memoization and subproblems

Shortest Paths

Crazy Eights

Guessing Viewpoint

Readings
CLRS 15

Dynamic Programming (DP)

e Powerful algorithmic design technique

e Large class of seemingly exponential problems have a polynomial solution (“only”)
via DP

e Particularly for optimization problems (min / max)

* DP ~ “controlled brute force”

* DP = recursion + re-use

Fibonacci Numbers

Fr=FKN=1 F,=F_1+F,

Naive Algorithm

follow recursive definition

fib(n):
if n <2: return 1
else return fib(n — 1) + fib(n — 2)

= Tn)=TMn—-1)4+T(n—-2)4+0(1) = ¢"
> 2T (n — 2) + O(1) > 2"/2
EXPONENTIAL - BAD!

Parithy
Typewritten Text
Dynamic Programming I

Aayisha
Typewritten Text

Dynamic Programming |

F

n

>
\
EDE ¥

Figure 1: Naive Fibonacci Algorithm

Simple Idea
memoize

memo = { }
fib(n):
if n in memo: return memoln]
else: if n <2: f=1
else: f = fib(n —1) + fib(n — 2)
—_———

free
memo|n| = f
return f

T(n)=T(n—1)+0(1) =0(n)

* DP & recursion + memoization
e remember (memoize) previously solved “subproblems” that make up problem
— in Fibonacci, subproblems are Fgy, Fy,--- , F,
e if subproblem already solved, re-use solution
* = time = { of subproblems - time/subproblem

e — in fib: § of subproblems is O(n) and time/subproblem is O(1) - giving us a total
time of O(n).

Parithy
Typewritten Text
Dynamic Programming I

Dynamic Programming |

Shortest Paths

e Recursive formulation:
8(s, 1) = min{w(s, v) + (v,) ‘(s, v) e B}

e does this work with memoization?
no, cycles = infinite loops (see Figure .

©

Figure 2: Shortest Paths

e in some sense necessary for neg-weight cycles

e works for directed acyclic graphs in O(V + E)
(recursion effectively DFS/topological sort)

e trick for shortest paths:

— Ok (s,t) = shortest path using < k edges
= min{dx_1(s,t)} U {w(s,v) + op—1(v,t) ‘(s, v)eE}
...except 0i(t,t) = ¢, (s, t) = o0 if s #1

— 0(s,t) = 0p—1(s,t) assuming no negative cycles

—> time = f subproblems - time/subproblem
————

O(n3) for stk really O(n2) O(n)--really degv

= O(V-) deg(V)) = O(VE)
14

* Subproblem dependency should be acyclic.

Parithy
Typewritten Text
Dynamic Programming I

Dynamic Programming |

Crazy Eights Puzzle

e given a sequence of cards c[¢], c[1],--- ,c[n — 1]
e.g., 70,690,705, 30,8, J M

e find longest left-to-right “trick” (subsequence)

C[’il], C[ig], s C[Zk] (il <dop < - ’Lk)
where c[i;] & c[ij11] “match” for all j
have some suit or rank or one has rank 8
e recursive formulation:
trick(i) = length of best trick starting at c[i]
= 1 4 max(trick(j) for j in range(i + 1, n) if match (c[é], c[j]))
best = max(trick(7) foriin range(n))

e memoize: trick(i) depends only on trick(>)

—> time = fsubproblems- time/subproblem

O(n) O(n)
= 0(n?)
“Guessing” Viewpoint

e what is the first card in best trick? guess!
i.e., try all possibilities & take best result
- only O(n) choices

e what is next card in best trick from i? guess!

— if you pretend you knew, solution becomes easy (using other subproblems)

— actually pay factor of O(n) to try all

e “ use only small § choices/guesses per subproblem

poly(n)~O(1)

Source: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-
spring-2008/lecture-notes/lec19.pdf

Parithy
Typewritten Text
Source: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-spring-2008/lecture-notes/lec19.pdf

Parithy
Typewritten Text
Dynamic Programming I

