
DISTRIBUTED COMPUTING

A distributed system is one in which the processors are less strongly connected. A

typical distributed system consists of many independent computers in the same room,

attached via network connections. Such an arrangement is often called a cluster.

In a distributed system, each processor has its own independent memory. This

precludes using shared memory for communicating. Processors instead communicate

by sending messages. In a cluster, these messages are sent via the network.

Though message passing is much slower than shared memory, it scales better for

many processors, and it is cheaper. Plus programming such a system is arguably

easier than programming for a shared-memory system, since the synchronization

involved in waiting to receive a message is more intuitive. Thus, most large systems

today use message passing for interprocessor communication.

From now on, we'll be working with a message-passing system implemented using the

following two functions.

void send(int dst_pid, int data)

Sends a message containing the integer data to the processor whose ID

is dst_pid. Note that the function's return may be delayed until the receiving

processor requests to receive the data — though the message might instead be

buffered so that the function can return immediately.

int receive(int src_pid)

Waits until the processor whose ID is src_pid sends a message and returns the

integer in that message. This is called a blocking receive. Some systems also

support a non-blocking receive, which returns immediately if the processor

hasn't yet sent a message. Another variation is a receive that allows a program

to receive the first message sent by any processor. However, in our model, the

call will always wait until it receives a message (unless there is already a

message waiting to be sent), and the source processor's ID must always be

specified.

To demonstrate how to program in this model, we return to our example of adding all

the numbers in an array. We imagine that each processor already has its segment of

the array in its memory, called segment. The variableprocs holds the number of

processors in the system, and pid holds the processor's ID (a unique integer between 0

and procs − 1, as before).

total = segment[0];

for(i = 1; i < segment.length; i++) total += segment[i];

if(pid > 0) { // each processor but 0 sends its total to processor 0

 send(0, total);

} else { // processor 0 adds all these totals up

 for(int k = 1; k < procs; k++) total += receive(k);

}

This code says that each processor should first add the elements of its segment. Then

each processor except processor 0 should send its total to processor 0. Processor 0

waits to receive each of these messages in succession, adding the total of that

processor's segment into its total. By the end, processor 0 will have the total of all

segments.

In a large distributed system, this approach would be flawed since inevitably some

processors would break, often due to the failure of some equipment such as a hard

disk or power supply. We'll ignore this issue here, but it is an important issue when

writing programs for large distributed systems in real life.

Parithy
Typewritten Text
Source : http://www.toves.org/books/distalg/index.html#1

	DISTRIBUTED COMPUTING

