

 DIRECT MEMORY ACCESS (DMA)

The discussion in the previous sections concentrates on data transfer between the

processor and I/O devices. Data are transferred by executing instructions such as

Move DATAIN, R0

An instruction to transfer input or output data is executed only after the processor

determines that the I/O device is ready. To do this, the processor either polls a status flag

in the device interface or waits for the device to send an interrupt request. In either case,

considerable overhead is incurred, because several program instructions must be executed

for each data word transferred. In addition to polling the status register of the device,

instructions are needed for incrementing the memory address and keeping track of the

word count. When interrupts are used, there is the additional overhead associated with

saving and restoring the program counter and other state information.

To transfer large blocks of data at high speed, an alternative approach is used. A

special control unit may be provided to allow transfer of a block of data directly between
 an external device and the main memory, without continuous intervention by the

processor. This approach is called direct memory access, or DMA.

DMA transfers are performed by a control circuit that is part of the I/O device

interface. We refer to this circuit as a DMA controller. The DMA controller performs the

functions that would normally be carried out by the processor when accessing the main

memory. For each word transferred, it provides the memory address and all the bus

signals that control data transfer. Since it has to transfer blocks of data, the DMA

controller must increment the memory address for successive words and keep track of the

number of transfers.

Although a DMA controller can transfer data without intervention by the

processor, its operation must be under the control of a program executed by the

processor. To initiate the transfer of a block of words, the processor sends the starting

address, the number of words in the block, and the direction of the transfer. On receiving

this information, the DMA controller proceeds to perform the requested operation. When

the entire block has been transferred, the controller informs the processor by raising an

interrupt signal.

While a DMA transfer is taking place, the program that requested the transfer

cannot continue, and the processor can be used to execute another program. After the

DMA transfer is completed, the processor can return to the program that requested the

transfer.

I/O operations are always performed by the operating system of the computer in

response to a request from an application program. The OS is also responsible for

suspending the execution of one program and starting another. Thus, for an I/O operation

involving DMA, the OS puts the program that requested the transfer in the Blocked state,

initiates the DMA operation, and starts the execution of another program. When the

transfer is completed, the DMA controller informs the processor by sending an interrupt

 request. In response, the OS puts the suspended program in the Runnable state so that it

can be selected by the scheduler to continue execution.

Figure 4 shows an example of the DMA controller registers that are accessed by
the processor to initiate transfer operations. Two registers are used for storing the

Status and Control 31 30 1 0

IRQ

IE R/W

Done

Starting address

Word count

Figure 4 Registers in DMA interface

Processor

System bus

Disk/DMA DMA
controller controller Printer Keyboard

Main
memory

Network
Interface

Figure 5 Use of DMA controllers in a computer system

Starting address and the word count. The third register contains status and control flags.

The R/W bit determines the direction of the transfer. When this bit is set to 1 by a

program instruction, the controller performs a read operation, that is, it transfers data

Disk Disk

from the memory to the I/O device. Otherwise, it performs a write operation. When the

controller has completed transferring a block of data and is ready to receive another

command, it sets the Done flag to 1. Bit 30 is the Interrupt-enable flag, IE. When this flag

is set to 1, it causes the controller to raise an interrupt after it has completed transferring a

block of data. Finally, the controller sets the IRQ bit to 1 when it has requested an

interrupt.

An example of a computer system is given in above figure, showing how DMA

controllers may be used. A DMA controller connects a high-speed network to the

computer bus. The disk controller, which controls two disks, also has DMA capability

and provides two DMA channels. It can perform two independent DMA operations, as if

each disk had its own DMA controller. The registers needed to store the memory address,

the word count, and so on are duplicated, so that one set can be used with each device.

To start a DMA transfer of a block of data from the main memory to one of the

disks, a program writes the address and word count information into the registers of the

corresponding channel of the disk controller. It also provides the disk controller with

information to identify the data for future retrieval. The DMA controller proceeds

independently to implement the specified operation. When the DMA transfer is

completed. This fact is recorded in the status and control register of the DMA channel by

setting the Done bit. At the same time, if the IE bit is set, the controller sends an interrupt

request to the processor and sets the IRQ bit. The status register can also be used to

record other information, such as whether the transfer took place correctly or errors

occurred.

Memory accesses by the processor and the DMA controller are interwoven.

Requests by DMA devices for using the bus are always given higher priority than

processor requests. Among different DMA devices, top priority is given to high-speed

peripherals such as a disk, a high-speed network interface, or a graphics display device.

Since the processor originates most memory access cycles, the DMA controller can be

said to “steal” memory cycles from the processor. Hence, the interweaving technique is

usually called cycle stealing. Alternatively, the DMA controller may be given exclusive

access to the main memory to transfer a block of data without interruption. This is known

as block or burst mode.

Most DMA controllers incorporate a data storage buffer. In the case of the

network interface in figure 5 for example, the DMA controller reads a block of data from

the main memory and stores it into its input buffer. This transfer takes place using burst

mode at a speed appropriate to the memory and the computer bus. Then, the data in the

buffer are transmitted over the network at the speed of the network.

A conflict may arise if both the processor and a DMA controller or two DMA

controllers try to use the bus at the same time to access the main memory. To resolve

these conflicts, an arbitration procedure is implemented on the bus to coordinate the

activities of all devices requesting memory transfers.

Bus Arbitration:-

The device that is allowed to initiate data transfers on the bus at any given time is

called the bus master. When the current master relinquishes control of the bus, another

device can acquire this status. Bus arbitration is the process by which the next device to

become the bus master is selected and bus mastership is transferred to it. The selection of
the bus master must take into account the needs of various devices by establishing a

priority system for gaining access to the bus.

There are two approaches to bus arbitration: centralized and distributed. In

centralized arbitration, a single bus arbiter performs the required arbitration. In

distributed arbitration, all devices participate in the selection of the next bus master.

Centralized Arbitration:-

The bus arbiter may be the processor or a separate unit connected to the bus. A

basic arrangement in which the processor contains the bus arbitration circuitry. In this

case, the processor is normally the bus master unless it grants bus mastership to one of

the DMA controllers. A DMA controller indicates that it needs to become the bus master

. The signal on the Bus-Request line is the logical

OR of the bus requests from all the devices connected to it. When Bus-Request is

BR by activating the Bus-Request line,

activated, the processor activates the Bus-Grant signal, BG1, indicating to the DMA

controllers that they may use the bus when it becomes free. This signal is connected to all

DMA controllers using a daisy-chain arrangement. Thus, if DMA controller 1 is

requesting the bus, it blocks the propagation of the grant signal to other devices.

Otherwise, it passes the grant downstream by asserting BG2. The current bus master

indicates to all device that it is using the bus by activating another open-controller line

. Hence, after receiving the Bus-Grant signal, a DMA controller

waits for Bus-Busy to become inactive, then assumes mastership of the bus. At this time,

it activates Bus-Busy to prevent other devices from using the bus at the same time.

BBSY called Bus-Busy,

Distributed Arbitration:-

Vcc ARB3

ARB2

ARB1

ARB0

Start-Arbitration

O.C

0 1 0 1 0 1 1 1

Interface circuit

for device A

Fig 6 A distributed arbitration

Distributed arbitration means that all devices waiting to use the bus have equal

responsibility in carrying out the arbitration process, without using a central arbiter. A

simple method for distributed arbitration is illustrated in figure 6. Each device on the bus

assigned a 4-bit identification number. When one or more devices request the bus, they

signal and place their 4-bit ID numbers on four open- Start� Arbitration

assert the

A winner is selected as a result of the

interaction among the signals transmitted over those liens by all contenders. The net

outcome is that the code on the four lines represents the request that has the highest ID

number.

ARB 0 ARB 3 . collector lines, through

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iv-computer-organization-10cs46-notes.pdf

