DEVICE FILES API

Device files are used to interface physical devices with application programs.

Specifically, when a process reads or writes to a device file, the kernel uses the major and
minor device numbers of a file to select a device driver function to carry out the actual data
transfer.

Device files may be character-based or block-based.

UNIX systems define the mknod API to create device files.

#include <sys/stat.h>

#include <unistd.h>

int mknod (const char* path name, mode t mode, int device_id);

1. The path_name argument is the path name of a directory to be created.

2. The mode argument specifies the access permission for the owner, group and others to be
assigned to the file.

3. The device_id contains the major and minor device numbers and is constructed in most
UNIX systems as follows: The lowest byte of a device id is set to a minor device number
and the next byte is set to the major device number. For example, to create a block device
file called SCSI5 with major and minor numbers of 15 and 3, respectively, and access
rights of read-write-execute for everyone, the mknod system call is:
mknod("SCSI5", S_IFBLK | S_ IRWXU | S_ IRWXG | S_IRWXO, (15<<8) 13);

4. The major and minor device numbers are extended to fourteen and eighteen bits,
respectively.

5. In UNIX, if a calling process has no controlling terminal and it opens a character
device file, the kernel will set this device file as the controlling terminal of the process.
How-ever, if the O NOCTTY flag is set in the open call, such action will be

suppressed.

6. The O NONBLOCK flag specifies that the open call and any subsequent read or write

calls to a device file should be nonblocking to the process.

The following test mknod.C program illustrates use of the mknod, open, read, write, and

close APIs on a block device file.

#include <iostream.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/stat.h>

int main(int arge, char* argv[]) {

if(arge!=4){
cout << "usage: " << argv[0] << " <file> <major no> <minor no>\n";
return O;

j

int major = atoi(argv|[2]), minor = atoi(argv[3]);

(void) mknod(argv[1], S IFCHR | S IRWXU | S IRWXG | S IRWXO, (major <<8) | minor);
int rc=1, fd = open(argv[1], O RDWR | O NONBLOCK | O NOCTTY);
char buf[256];
while (rc && fd !=-1)

if ((rc = read(fd, buf, sizeof(buf))) <0)
perror("read");
else if (rc) cout << buf << endl;

close(fd);
}

Source : http://elearningatria.files.wordpress.com/2013/10/cse-iv-unix-and-shell-programming-10cs44-
notes.pdf

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iv-unix-and-shell-programming-10cs44-notes.pdf

