
DEFINING METHODS IN JAVA - II

Parameters
Now suppose we want to modify our MultipleBalloons program so that the balloons have
different colors. The best way to accomplish this is to use parameters for passing additional
information — in this case, a color — into the method.

To write a method that takes a parameter, you list the type and name of the parameter in parentheses.

public <returnType> <methodName>(<parmType> <parmName>) {

 <bodyOfMethod>

}

For example, if we decide to name our parameter balloonColor, we would modify
our createBalloon method declaration to be:

public GCompound createBalloon(Color balloonColor) {

The name balloonColor will be the name of a variable available within createBalloon, which
will refer to whatever value is designated when invoking the method. The first few lines
of createBalloon will be the following.

GOval ball = new GOval(0, 0, 50, 50);

ball.setFilled(true);

ball.setFillColor(balloonColor);

Notice how in the last line, we use the balloonColor variable.

When we invoke the method within run, we will need to include the balloon's color in parentheses.
For example, the run method might start with the following lines.

GCompound eastbound = createBalloon(new Color(255, 0, 0));

add(eastbound, 10, 10);

GCompound westbound = createBalloon(new Color(0, 0, 255));

add(westbound, getWidth() - westbound.getWidth() - 10, 60);

This will end up executing createBalloon the first time with the balloonColor variable referring
to the red color; and the second time with the balloonColor variable referring to the blue color. As

a result, the balloon proceeding southeast will be a red balloon, while the balloon proceeding
southwest will be blue.

If you want a method with multiple parameters, list each parameter's type and name in the method
declaration's parentheses, separated by commas. For example, if we want parameters for customizing
the new balloon's height and basket color as well, we would want two additional parameters
to createBalloon.

public GCompound createBalloon(Color balloonColor, int height,

 Color basketColor) {

Java permits defining multiple methods with the same name, as long as they can be distinguished
based on their parameters: That is, any two methods of the same name must have a different number
of parameters — or, if they have the same number of parameters, one of the methods must have a
parameter whose type is incompatible with the other method's parameter in the same position.

Having multiple methods of the same name is useful when you want multiple methods that do very
similar things, but we don't want to have to remember two different names. For example, if we have
our createBalloon method where the balloon color, height, and basket color can all be specified as
parameters, we may still want a createBalloonmethod where only the balloon color is specified.
We can accomplish this by adding the following method.

public GCompound createBalloon(Color balloonColor) {

 return createBalloon(balloonColor, 70, new Color(224, 192, 0));

}

When we want to create a balloon with the default height and basket color, we can just invoke this
one-parameter method, and it will promptly invoke the three-parametercreateBalloon method,
including the default height of 70, and the default basket color of tan. The return statement in the
one-parameter createBalloon says that the method should return whichever GCompound object that
the three-parameter createBalloon method returns.

Methods and variables
Each method has its own set of variables, completely separate from other method's variables, even if
two happen to have variables with the same name. Consider the following.

public void run() {

 GCompound balloon;

 createBalloon();

 add(balloon); // Illegal!

}

public void createBalloon() {

 GCompound balloon = new GCompound();

 // ... code to initialize the balloon

}

You might be tempted to think that when createBalloon assigns to its balloon variable,
the run method's balloon's variable would also be initialized. But these are actually two completely
different variables, and so this assignment in createBalloon has no effect on the balloon variable
in run. In fact, the compiler will reject the program, complaining that
the run method's balloon variable will never have been initialized when it is used as a parameter for
the add method.

So what can we do? If we want Method A to know about a value created by Method B, our only
choices are to pass the value as a parameter (if B invokes A) or to return the value back
(if A invokes B). This severely limits the amount of communication between methods, though it does
accord with the good programming practice of keeping each method's purpose simple. (Actually,
there is a third way for communicating values, the instance variable, which we will study in Chapter
14. Good programmers would not use instance variables to communicate between methods anyway.)

Similarly, when you use a variable x for a method's parameter y, a subsequent change to the
variable y will not alter the value associated with x. Consider the following.

public void run() {

 GCompound eastbound = new GCompound();

 createBalloon(eastbound);

 add(eastbound);

}

public void createBalloon(GCompound balloon) {

 // This method accomplishes nothing!!

 balloon = new GCompound();

 balloon.add(new GOval(0, 0, 50, 50));

 balloon.add(new GRect(15, 70, 21, 10));

}

In run, we invoke createBalloon, passing a variable eastbound for the balloon parameter.
Passing the parameter simply copies the value of eastbound into balloon, so
that balloonand eastbound reference the same object. There is no link established between the
variables balloon and eastbound, however: They just both happen to reference the same object.

http://www.toves.org/books/java/ch14-makeclass/index.html
http://www.toves.org/books/java/ch14-makeclass/index.html

As a result, when the createBalloon method assigns balloon to reference
a different GCompound object, this has no influence on eastbound. The createBalloon method
will add an oval and a rectangle into this second GCompound object, and createBalloon returns.
But eastbound still references the first GCompound object (instantiated in the first line of run),
which remains empty. Adding eastbound into the window simply adds an empty compound object,
and the window will appear empty.

Computer scientists call this technique for passing parameters call by value: When invoking a
method, the value designated for the parameter is copied into the parameter variable. (The primary
alternative to call by value is call by reference, where changes to the parameter variable also affect
whatever variable is specified in the parentheses. Java does not have any support for call by
reference, but some other programming languages do.)

In our example above, we can repair the code by removing the
line balloon = new GCompound() from createBalloon. With this line removed,
the balloon variable increateBalloon continues to refer to the same GCompound object
as eastbound. The remaining lines of createBalloon will add shapes into the
this GCompound object, which the runmethod will add into the screen. Thus, the above fragment
would display a circle and rectangle if the balloon =… line is omitted; but nothing will appear if
that line is included.

(Even though the program could be repaired by removing the balloon =… line, this is not the best
design. A better design would avoid having balloon as a parameter altogether, and to instead return
the GCompound back to run, as we originally did in Figure 6.4. We've been discussing this alternative
implementation just to clarify how variables interact between methods.)

http://www.toves.org/books/java/ch06-graphics/index.html#fig4
Parithy
Typewritten Text
Source : http://www.toves.org/books/java/ch12-methods/index.html

	DEFINING METHODS IN JAVA - II
	Parameters
	Methods and variables

