
DEFINING LOGIC INSTRUCTIONS

Logic operations such as AND, OR, and NOT, applied to individual bits, are the basic

building blocks of digital circuits, as described. It is also useful to be able to perform
logic operations is software, which is done using instructions that apply these operations
to all bits of a word or byte independently and in parallel. For example, the instruction

Not dst

SHIFT AND ROTATE INSTRUCTIONS:-

There are many applications that require the bits of an operand to be shifted right
or left some specified number of bit positions. The details of how the shifts are performed
depend on whether the operand is a signed number or some more general binary-coded
information. For general operands, we use a logical shift. For a number, we use an
arithmetic shift, which preserves the sign of the number.

Logical shifts:-

Two logical shift instructions are needed, one for shifting left (LShiftL) and
another for shifting right (LShiftR). These instructions shift an operand over a number of
bit positions specified in a count operand contained in the instruction. The general form
of a logical left shift instruction is

LShiftL count, dst

(a) Logical shift left LShiftL #2, R0

R0

0 0 1 1 1 0 . . . 0 1 1

1 1 1 0 . . . 0 1 1 0 0

0

before :

after:

(b) Logical shift right LShiftR #2, R0

R0 C

0 1 1 1 0 . . . 0 1 1 0

1
0 0 0 1 1 1 0 . . . 0

(c) Arithmetic shift right AShiftR #2, R0

R0 C

1 0 0 1 1 . . . 0 1 0 0

1 1 1 0 0 1 1 . . . 0 1

Rotate Operations:-

In the shift operations, the bits shifted out of the operand are lost, except for the
last bit shifted out which is retained in the Carry flag C. To preserve all bits, a set of
rotate instructions can be used. They move the bits that are shifted out of one end of the
operand back into the other end. Two versions of both the left and right rotate instructions

Before:

After:

Before:

After:

are usually provided. In one version, the bits of the operand are simply rotated. In the
other version, the rotation includes the C flag.

(a) Rotate left without carry RotateL #2, R0

C
R0

1 1 1 0 . . . 0 1 1

1 0 . . . 0 1 1 0 1

#2, R0

R0

0 1 1 1 0 . . . 0 1 1

1 1 0 . . 0 1 1 0 0

0 0

1 1

Before:

After:

(b) Rotate left with carry RotateLC

C

Before:

after:

0

1

(c) Rotate right without carry RotateR #2, R0

C

R0

0 1 1 1 0 . . . 0 1 1 0

1 1 0 1 1 1 0 . . . 0 1

(d) Rotate right with carry RotateRC #2, R0

R0 C

0 1 1 1 0 . . . 0 1 1 0

1 0 0 1 1 1 0 . . . 0 1

Before:

After:

Before:

after:

Parithy
Typewritten Text
Source : http://elearningatria.files.wordpress.com/2013/10/cse-iv-computer-organization-10cs46-notes.pdf

