
Debugging: How to find the errors

As some of you may have discovered, there are times when -- despite your carefully

crafted pseudocode -- you make a mistake in translating your algorithm into actual

Scilab code. We call these mistakes bugs. The process of removing them from your

program is called debugging.

You can find many, many references and guides to debugging all over the Net; going

to Google and typing debugging techniques returns about 1,340,000 items. There are

good chapters on debugging in some of the references for the course.

Let me show you just one, very simple technique that I use frequently. It isn't particular

to Scilab, but can be used in just about any programming language.

A buggy program

Consider the following program, which tries to find the root via the bisection

technique, but fails.

 root_bisect.sci with a bug

function root = root_bisect(lower_bound, upper_bound, epsilon, func)

//

// Find the root of the given function within the given interval,

// using the bisection method.

//

// Arguments:

//

// lower_bound (input) lower bound of interval

// on which to search for root

//

// upper_bound (input) upper bound of interval

//

// epsilon (input) when fractional change in root

// reaches this limit, stop

//

// func (input) name of function whose root

http://spiff.rit.edu/classes/phys317/phys317.html#reserve
http://spiff.rit.edu/classes/phys317/lectures/debug/buggy.sci

// we seek -- should take

// a single argument

//

// root (output) argument at which the given

// function has value zero

//

// MWR 3/25/2002

//

// sanity checks

if (lower_bound >= upper_bound)

 error('lower_bound must be less than upper_bound');

end

if (epsilon <= 0)

 error('epsilon must be greater than zero');

end

// if there is no guaranteed root between the given bounds,

// then quit with an error message

y_low = feval(lower_bound, func);

y_high = feval(upper_bound, func);

if (sign(y_low) == sign(y_high))

 error('function has same sign at both bounds -- quitting');

end

done = 0;

iterations = 0;

old_mid = lower_bound;

while (done == 0)

 y_low = feval(lower_bound, func);

 y_high = feval(upper_bound, func);

 // Pick the half of the interval in which the root must exist

 // 'mid' is going to be next root candidate

 mid = (upper_bound - lower_bound)/2.0;

 y_mid = feval(mid, func);

 if (sign(y_mid) == sign(y_low))

 // root is in upper half

 lower_bound = mid;

 else

 // root is in lower half

 upper_bound = mid;

 end

 // now, check to see if we are close enough

 if (mid == 0)

 // we can't calculate fractional change here, so use criterion

 // that absolute value of the change in candidates is less than epsilon

 if (abs(mid - old_mid) < epsilon)

 done = 1;

 end

 else

 frac_change = abs((mid - old_mid)/mid);

 if (frac_change < epsilon)

 done = 1;

 end

 end

 // we need to save a copy of the current root candidate, so we

 // can calculate the fractional change since the previous one

 old_mid = mid;

 iterations = iterations + 1;

end

// when we get here, the latest root candidate is in 'mid'

root = mid;

endfunction

Now, if we run the program with a very simple function funcz.sci

function y = funcz(x)

y = x*x - 5;

http://spiff.rit.edu/classes/phys317/lectures/debug/funcz.sci

on the interval [0, 5], we ought to find the root sqrt(5) = 2.236. But when we try, what

happens?

Obviously, something is wrong. But what? And where in the source code? Can you find

the error? It's pretty hard when all you have to use is the source code itself.

Print and pause to find the bug

Here's a second version of exactly the same program -- it still contains the error.

However, this version includes some extra code which is designed to track it down.

 root_bisect.sci with bug and extra debugging equipment

function root = root_bisect(lower_bound, upper_bound, epsilon, func)

//

// Find the root of the given function within the given interval,

// using the bisection method.

//

// Arguments:

//

// lower_bound (input) lower bound of interval

// on which to search for root

//

// upper_bound (input) upper bound of interval

//

// epsilon (input) when fractional change in root

// reaches this limit, stop

//

// func (input) name of function whose root

// we seek -- should take

// a single argument

//

// root (output) argument at which the given

// function has value zero

//

// MWR 3/25/2002

http://spiff.rit.edu/classes/phys317/lectures/debug/buggy_print.sci

//

// set this to 1 to watch diagnostic messages as the function runs

verbose = 1;

// sanity checks

if (lower_bound >= upper_bound)

 error('lower_bound must be less than upper_bound');

end

if (epsilon <= 0)

 error('epsilon must be greater than zero');

end

// if there is no guaranteed root between the given bounds,

// then quit with an error message

y_low = feval(lower_bound, func);

y_high = feval(upper_bound, func);

if (sign(y_low) == sign(y_high))

 error('function has same sign at both bounds -- quitting');

end

done = 0;

iterations = 0;

old_mid = lower_bound;

while (done == 0)

 y_low = feval(lower_bound, func);

 y_high = feval(upper_bound, func);

 if (verbose > 0)

 mprintf('iter %5d %11.7e %9.4e %11.7e %9.4e ', ...

 iterations, lower_bound, y_low, upper_bound, y_high);

 // pause;

 end

 // Pick the half of the interval in which the root must exist

 // 'mid' is going to be next root candidate

 mid = (upper_bound - lower_bound)/2.0;

 y_mid = feval(mid, func);

 if (sign(y_mid) == sign(y_low))

 // root is in upper half

 lower_bound = mid;

 else

 // root is in lower half

 upper_bound = mid;

 end

 // now, check to see if we are close enough

 if (mid == 0)

 if (verbose > 0)

 mprintf(' abs change %9.4e ... ', abs(mid - old_mid));

 end

 // we can't calculate fractional change here, so use criterion

 // that absolute value of the change in candidates is less than epsilon

 if (abs(mid - old_mid) < epsilon)

 if (verbose > 0)

 mprintf(' stop \n');

 end

 done = 1;

 else

 if (verbose > 0)

 mprintf(' keep going \n');

 end

 end

 else

 frac_change = abs((mid - old_mid)/mid);

 if (verbose > 0)

 mprintf(' %9.4e \n', frac_change);

 end

 if (frac_change < epsilon)

 if (verbose > 0)

 mprintf(' stop \n');

 end

 done = 1;

 else

 if (verbose > 0)

 mprintf(' keep going \n');

 end

 end

 end

 // we need to save a copy of the current root candidate, so we

 // can calculate the fractional change since the previous one

 old_mid = mid;

 iterations = iterations + 1;

end

// when we get here, the latest root candidate is in 'mid'

root = mid;

endfunction

Look near the top of the main loop. There's a new bit of code that looks like this:

 if (verbose > 0)

 mprintf('iter %5d %11.7e %9.4e %11.7e %9.4e ', ...

 iterations, lower_bound, y_low, upper_bound, y_high);

 pause;

 end

What does it do?

 If the variable called verbose is equal to zero, this new bit of code is not

executed at all.

 But if verbose is set to 1 (for example), then the program will print out the value

of the lower and upper bounds of the current range, plus the values of the

function at each bound ...

 and, after printing the information, the pause statement causes the program

to wait for the user to type "return" and press the enter key before it continues

Please copy this program to your local disk, rename it to root_bisect.sci, and run it.

Watch what happens.

Now that you've seen the output of the program, can you explain why it isn't finding

the root properly? Can you now find the place in the program which is most likely to

contain the error?

Leaving debugging mode

It is often useful to include extra mprintf statements in your program as you are

developing it. Sometimes, you may add a LOT of these debugging "print" lines. What

happens when it's time to turn the program in?

 One option is to go into the source code and delete all the

extra mprintf statements. But you might accidentally delete some code that you

really need. And what happens if you need to go back and add new features to

your program?

 Another option is to use the comment characters // to "comment out" the extra

lines; that way, they are still present and can be re-activated later.

 But I think the best way (at least for this course) is to add a special "control

variable", which is defined ONCE at the start of your program. It controls all the

"extra" mprintf statements, as well as any pause or other debugging material. By

changing just a single line:

 // set this to 1 to watch diagnostic messages as the function runs

 verbose = 1;

you can switch the program from its "debugging" state to its "production" state,

or back.

Try editing your version of the program: change the verbose variable to zero, and run

it again. Now what happens?

Source: http://spiff.rit.edu/classes/phys317/lectures/debug/debug.html

