
DATA STRUCTURES

Data structures are basically just that - they are structures which can hold

some data together. In other words, they are used to store a collection of related

data.

There are four built-in data structures in Python - list, tuple, dictionary and set. We

will see how to use each of them and how they make life easier for us.

List

A list is a data structure that holds an ordered collection of items i.e. you can store

a sequence of items in a list. This is easy to imagine if you can think of a shopping

list where you have a list of items to buy, except that you probably have each item

on a separate line in your shopping list whereas in Python you put commas in

between them.

The list of items should be enclosed in square brackets so that Python understands

that you are specifying a list. Once you have created a list, you can add, remove or

search for items in the list. Since we can add and remove items, we say that a list is

a mutable data type i.e. this type can be altered.

http://www.swaroopch.com/notes/python/#data_structures
http://www.swaroopch.com/notes/python/#list

Quick Introduction To Objects And Classes

Although I’ve been generally delaying the discussion of objects and classes till now,

a little explanation is needed right now so that you can understand lists better. We

will explore this topic in detail in a later chapter.

A list is an example of usage of objects and classes. When we use a variable i and

assign a value to it, say integer 5 to it, you can think of it as creating an object (i.e.

instance) i of class (i.e. type) int. In fact, you can read help(int) to understand this

better.

A class can also have methods i.e. functions defined for use with respect to that

class only. You can use these pieces of functionality only when you have an object

of that class. For example, Python provides an append method for the listclass which

allows you to add an item to the end of the list. For example, mylist.append('an

item') will add that string to the list mylist. Note the use of dotted notation for

accessing methods of the objects.

A class can also have fields which are nothing but variables defined for use with

respect to that class only. You can use these variables/names only when you have an

object of that class. Fields are also accessed by the dotted notation, for

example, mylist.field.

http://www.swaroopch.com/notes/python/#_quick_introduction_to_objects_and_classes
http://www.swaroopch.com/notes/python/#oop

Example (save as ds_using_list.py):

This is my shopping list

shoplist = ['apple', 'mango', 'carrot', 'banana']

print 'I have', len(shoplist), 'items to purchase.'

print 'These items are:',

for item in shoplist:

 print item,

print '\nI also have to buy rice.'

shoplist.append('rice')

print 'My shopping list is now', shoplist

print 'I will sort my list now'

shoplist.sort()

print 'Sorted shopping list is', shoplist

print 'The first item I will buy is', shoplist[0]

olditem = shoplist[0]

del shoplist[0]

print 'I bought the', olditem

print 'My shopping list is now', shoplist

Output:

$ python ds_using_list.py

I have 4 items to purchase.

These items are: apple mango carrot banana

I also have to buy rice.

My shopping list is now ['apple', 'mango', 'carrot', 'banana', 'rice']

I will sort my list now

Sorted shopping list is ['apple', 'banana', 'carrot', 'mango', 'rice']

The first item I will buy is apple

I bought the apple

My shopping list is now ['banana', 'carrot', 'mango', 'rice']

How It Works

The variable shoplist is a shopping list for someone who is going to the market.

In shoplist, we only store strings of the names of the items to buy but you can

add any kind of object to a list including numbers and even other lists.

We have also used the for..in loop to iterate through the items of the list. By now,

you must have realized that a list is also a sequence. The specialty of sequences will

be discussed in a later section.

Notice the use of the trailing comma in the print statement to indicate that we want

to end the output with a space instead of the usual line break. Think of the comma as

telling Python that we have more items to print on the same line.

Next, we add an item to the list using the append method of the list object, as

already discussed before. Then, we check that the item has been indeed added to the

list by printing the contents of the list by simply passing the list to the print

statement which prints it neatly.

Then, we sort the list by using the sort method of the list. It is important to

understand that this method affects the list itself and does not return a modified list -

this is different from the way strings work. This is what we mean by saying that lists

are mutable and that strings are immutable.

Next, when we finish buying an item in the market, we want to remove it from the

list. We achieve this by using the del statement. Here, we mention which item of the

list we want to remove and the del statement removes it from the list for us.

http://www.swaroopch.com/notes/python/#sequence

We specify that we want to remove the first item from the list and hence we use del

shoplist[0] (remember that Python starts counting from 0).

If you want to know all the methods defined by the list object, see help(list) for

details.

Source: http://www.swaroopch.com/notes/python/

