
Data & Procedure Reasoning about efficiency 

When we face a computational problem, of course we first want to find a correct algorithm 

for solving it. But given a choice between several correct algorithms, we would also like to be 

able to choose the fastest among them. Analyzing algorithms' performance is the subject of 

this chapter. After seeing the basic technique for theoretical analysis, called big-O notation, 

we'll look at its application to analyzing algorithms' speed for two significant problems: 

sorting arrays and counting primes. We'll conclude by looking at how the same concept can 

be applied to analyzing algorithms' memory usage. 

4.1. Analyzing efficiency 

Suppose, for example, that we want to write a program to determine integer square roots, 

which we'll define as the largest integer whose square does not exceed the query integer (in 

mathematical notation, ⌊sqrt(n)⌋). For example, the integer square root for 30 is 5, since 

5² ≤ 30 but 6² > 30; for 80, it is 8; and for 100, it is 10. 

The first technique one might imagine is this: We'll square consecutive numbers until we 

pass the query integer. Then we'll return one less than that. 

public static int isqrtIncrement(int query) { 

    int cur = 0; 

    while(cur * cur <= query) cur++; 

    return cur - 1; 

} 

Another technique is based on binary search: We'll maintain a range where we think the 

integer square root might be; and each iteration, we'll halve the range so that it still spans 

the integer square root, but one end of the new range is at the old range's midpoint. 

public static int isqrtHalve(int query) { 

    int low = 0;          // invariant: low * low <= query 

    int high = query + 1; // and high * high > query 

    while(high - low > 1) { // while range has >1 number 

        int mid = (low + high) / 2; 

        if(mid * mid <= query) low = mid; 

        else                   high = mid; 

    } 

    return low; 

} 
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While the technique as stated here is theoretically correct, this implementation has a 

major bug. Suppose we want to find the square root of 100,000, for example. This 

code will start by squaring half of that (50,000), and the result will be overflow — a 

number larger than an int can handle. This implementation is correct only for integers up 

to 92,680. By contrast, isqrtIncrement is correct for integers up to 2,147,395,599. For this 

chapter, however, we'll ignore such issues. 

Which approach is faster? The answer may not be obvious looking at the code alone. 

One way to determine this is to implement both algorithms and test. To do this, I wrote both 

and used them to find the sum of the integer square roots of the integers up to 90,000. 

isqrtIncrement 326 ms 

isqrtHalve 43 ms 

While this answers the question at hand, the answer is not entirely satisfying: Other than 

that isqrtHalve is faster than than isqrtIncrement, what have we learned? All we have is a 

single result, without much feeling for why one is faster than the other. We would like a 

handle on the reason for the difference for several reasons: 

 We'd like to be confident that the results obtained aren't peculiar to the particular 

computer on which we happened to run the tests. 

 We'd like to be confident that the results aren't peculiar to the specific tests that we 

ran. Here, we should be pretty confident: The algorithms are both pretty simple, so 

we don't expect them to behave peculiarly in some cases. Moreover, the input is 

simple enough that we can test a very wide range of possible inputs. 

By contrast, if we wanted to analyze a program to sort an array, we'd need to try all 

different ways to arrange each array, on the off-chance that one of those ways 

happens to be a very bad case for the program. Testing such a program on such a 

large number of possible inputs would be prohibitive. 

 We'd like to have a feel for the algorithms' weaknesses. If we can identify a 

bottleneck, then that gives us some insight where we should work hardest to improve 

performance — in effect, widening the bottleneck. The resulting algorithm may be 

faster than anything we thought of previously. 

For all these reasons, we'd like a different way to think about the efficiency of a program. 

4.1.1. Big-O notation 



What we'll do is to imagine a graph of how the algorithm works relative to how big the input 

is. Actually, for just this example, we won't just imagine it: I'll draw it for you. You can see it 

in Figure 4.1. (Actually, this graph is not the true graph. The original graph based on the 

actual data was quite bumpy, and I smoothed it out to convey the methods' essential 

behavior. The bumps, as you see, did not entirely disappear.) I want you to appreciate all the 

time I've saved you: Measuring all those times to get that graph is quite a pain. Luckily, we 

won't have to do this manually again. 

Figure 4.1: Comparing two square root algorithms experimentally. 

 

When you look at the graph, you see something quite noticeable. Not only 

is isqrtIncrement much slower than isqrtHalve for large n, but the difference increases 

dramatically as n increases. In fact, the isqrtHalve curve looks almost flat at its large end, 

while isqrtIncrement's curve continues to increase, though the rate of increase is slowly 

slowing as n grows. 

In fact, what we're looking at here is the difference between an inverse parabola 

(i.e., f(n) = a sqrt(n) + b) and a logarithmic curve (i.e., f(n) = a (log n) + b). With an inverse 

parabola, quadrupling n doubles the value (a sqrt(4 n) = 2 a sqrt(n)), neglecting the y-

intercept (b). You can see that isqrtIncrement follows this behavior: Atn = 20,000, the 

time is 2.5 μs, whereas with n = 80,000, the time is double that, 5 μs. However, 

quadrupling n with isqrtHalve has hardly any effect at all on the time: At n = 20,000, the 

time is 0.58 μs, whereas at n = 80,000, the time is 0.66 μs. The curve for isqrtHalve starts 

out growing, but it quickly becomes very close to flat; this is characteristic of a logarithmic 

curve, which this happens to be (though with some noise added). 

Any algorithm whose behavior is characterized by an inverse parabola will eventually be 

much slower than an algorithm characterized by a logarithmic curve. It doesn't matter what 
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the coefficient a and the y-intercept b are for the two curves: These values affect the exact 

crossover point, but no matter what, the inverse parabola will eventually surpass the 

logarithmic curve. (Well, it matters that a is positive. But it will be positive, since algorithms 

will be slower as n increases.) 

We can actually visualize a whole hierarchy of different curves. For example, if we have 

another algorithm whose graph is linear, it will eventually raise above one characterized by 

an inverse parabola. (The inverse parabola, after all, slowly decelerates, whereas a line 

always grows at the same rate.) And a parabola, which is continually accelerating, would 

eventually go above a line. 

We can tabulate this hierarchy. 

slowest parabola f(n) = a n² + b 

 
line f(n) = a n + b 

 
inverse parabola f(n) = a sqrt(n) + b 

 
logarithmic curve f(n) = a (log n) + b 

Computer scientists have a way of talking about these — and other — curves called big-O 

notation. Here, we say that the inverse parabola is O(sqrt(n)), whereas the logarithmic curve 

is O(log n). You can think of the capital O as hiding any constant multipliers, as well as any 

lower-order terms. Note that this means that not only is a n² + b classified as O(n²): So 

is a n² + b n + c and a n² + b sqrt(n) + c. 

(You may be wondering how to pronounce this. Some people read O(log n) as big-O of 

log n; others say, order log n. Both are correct.) 

This terminology generalizes to other functions, too. While we don't have an English term 

for a O(n1.5) curve, big-O notation gives us a way to talk about that function anyway. By the 

way, it ranks somewhere between O(n) and O(n²). 

In fact, the big-O bound is technically an upper bound. Thus, we can legally say that a line 

(which is O(n)) is O(n²) — or even that it is O(nn). This fact is important, because sometimes 

the nature of a curve is difficult to determine exactly, and so to get a result we may end up 

needing to cut some corners in our analysis by overestimating a bit. We'll see some 

examples of this later in this chapter, particularly in Section 4.3. 

In talking about algorithms, we use this phrasing: isqrtHalve takes O(log n) time, 

while isqrtIncrement takes O(sqrt(n)) time. With the ranking of different functions 

internalized, we understand this as a fancy way of saying that isqrtHalve is much better 

than isqrtIncrement — at least for large n. (We're not so worried about small nhere, 
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because both algorithms are quite fast for small n anyway. It may be that isqrtIncrement is 

faster there, but since we're talking about fractions of a microsecond for small n in any case, 

distinguishing which is faster there isn't important.) 

You might be wondering: What if we have two O(sqrt(n)) algorithms? Big-O analysis won't 

indicate which is faster, since big-O notation hides those constant coefficients. 

Unfortunately, there's no clean way around this: Those constant coefficients will depend on 

the particular computer for which we implement the algorithms, and they'll be very different 

for another computer. In fact, one of the O(sqrt(n)) algorithms may be faster on some 

computers, while the other is faster on other computers. But if we have a O(sqrt(n)) 

algorithm and a O(log n) algorithm, we know that regardless of the computer we choose, 

the O(log n) algorithm will be faster for large n. 

 
 

Now, here's the important part: With just a bit of practice, we can look at an algorithm and 

quickly tell what its big-O bound is. We don't need to go through all the bother of 

programming it up, taking lots of measurements, drawing a graph, and then simply 

guessing what the curve looks like. 

Let's take the isqrtIncrement method as a simple example. 

public static int isqrtIncrement(int query) { 

    int cur = 0; 

    while(cur * cur <= query) cur++; 

    return cur - 1; 

} 

You can look at this and immediately see that we'll go through the loop for at 

most sqrt(n) + 1 iterations. Each iteration takes some constant a amount of time — some 

amount of time to test whether cur * cur <= query, and some other amount of time to 

increment cur. Thus, the loop will take a (sqrt(n) + 1) time. In addition to this, there will be 

another constant b amount of time incurred once only: This will be the time to create 

the cur variable initialized to 0, to make the final testcur * cur <= query after the final 

iteration, and to subtract 1 from cur at the end. Thus, isqrtIncrement takes at 

most a (sqrt(n) + 1) + b = a sqrt(n) + (a + b) = O(sqrt(n)) time for some 

constants a and b whose values depend on the particular compiler and computer used. 

We can apply similar reasoning to isqrtHalve. 



public static int isqrtHalve(int query) { 

    int low = 0;          // invariant: low * low <= query 

    int high = query + 1; // and high * high > query 

    while(high - low > 1) { // while range has >1 number 

        int mid = (low + high) / 2; 

        if(mid * mid <= query) low = mid; 

        else                   high = mid; 

    } 

    return low; 

} 

The biggest difficulty here is determining the number of iterations for the loop. To get a 

handle on this, notice that the quantity high - low, which starts at query + 1, will halve 

each time. 

It doesn't quite halve: If high - low is odd, then the midpoint will be closer 

to low than to high, and if it happens to be low that is changed to mid, then the 

quantity high - low becomes ½ more than half what it was. (Of course, it would be 

½ less than half if high is the variable changed to mid.) If we were going to be completely 

rigorous, we might argue that the quantity high - low goes down by at least one third with 

each iteration. But we won't let such nitpicking muddy our argument here. 

We can tabulate, then, where high - low will be after each of the first few iterations. 

iterations high - low 

0 query + 1 

1 (query + 1) / 2 

2 (query + 1) / 4 

3 (query + 1) / 8 

4 (query + 1) / 16 

In general, after k iterations, high - low will be at (query + 1) / 2k. The method stops once 

this quantity reaches 1, which leads to the below equation; we have only to solve that 

equation for k to arrive at the number of iterations. 

(query + 1) / 2k = 1  

query + 1 = 2k  

log2 (query + 1) = k 



Thus, the loop will stop after log2 (query + 1) iterations. In general, whenever we have a loop 

that stops once a quantity reaches a constant, and that quantity starts atx and decreases by a 

constant percentage with each iteration, the loop will stop after O(log x) iterations. 

By the way, you might have noticed that the logarithm's base disappeared. We 

write O(log n) rather than O(log2 n). This is because the logarithm's base, when it is 

constant, is unimportant: The well-known logarithmic identity loga x = (logb x) / (logb a) 

says that changing the logarithm's base from one constant a to another constant b simply 

changes the coefficient by 1 / logb a. Since big-O notation hides constant coefficients 

anyway, the base is irrelevant, and we might as well omit it. 

Big-O analysis allows us to approximate and compare algorithms' performance without 

actually implementing them. While it only provides the roughest estimate of running time, 

that estimate works out well when we are concerned with performance for very large inputs. 

4.1.2. Multiple loops 

To become more familiar with using big-O notation, we need to examine more examples. 

The examples above were fairly simple, involving only a single loop. Often, however, 

algorithms involve multiple loops. Consider the following example intended to test whether 

all of the integers in an array are unique. 

public static boolean areAllUnique(int[] a) { 

    for(int i = 0; i < a.length; i++) { 

        for(int j = i + 1; j < a.length; j++) { 

            if(a[i] == a[j]) return false; 

        } 

    } 

    return true; 

} 

For each integer in this array, this method looks at all the integers following that one (note 

that j starts at i + 1) to see if any match it. If the inner loop finds a match, then it can 

return false; but if there are none found, then the outer loop continues to the next integer. 

Note that in this example, the input is an array, not a number. When we want to analyze the 

speed of operations on an array, it is typically expressed in terms of the array's length. We'll 

use n to refer to the length. 

One way to analyze the speed of methods using multiple loops is to start at the innermost 

level and move outwards. In this case, we can determine that the loop over jinvolves at 



most n iterations for each i, where n is the array's length, and each iteration of that loops 

takes O(1) time. (Often, the number of iterations is much less than n, but remember that we 

are willing to overestimate with big-O notation. In this case, as it happens, the average 

number of iterations is n / 2, and the constant multiplier ½ won't show up in the big-O 

bound anyway.) Thus, the inner loop (over j) takes a total of O(n) time it is executed. 

Executing this loop constitutes the whole of each iteration of the outer loop (over i), which 

involves at most n iterations. Thus, the outer loop will take at most n ⋅ O(n) = O(n²) time. 

The final returnstatement will take an additional O(1) time, so the total time taken 

is O(n²) + O(1) = O(n²). 

Multiple loops don't always mean that we multiply the number of iterations per loop, 

though. Consider the following simple method which finds the average of an array and then 

replaces each number that exceeds the average with the average instead. 

public static void cutLargeNumbers(int[] a) { 

    int total = 0; 

    for(int i = 0; i < a.length; i++) total += a[i]; 

    int average = total / a.length; 

    for(int j = 0; j < a.length; j++) { 

        if(a[j] > average) a[j] = average; 

    } 

} 

In this case, the loops are not nested, so the amount of time is the time for the first loop, 

followed by the time for the second loop. Here, the first loop will take O(n) time (since each 

of the n iterations takes O(1) time), and the second loop will take O(n) time (since each of 

the iterations also takes O(1) time). The pieces in between each take O(1) time, so the total 

is O(1 + n + 1 + n) = O(n). 

This type of analysis restricts itself to two questions: What is the maximum amount of time 

that each iteration of the loop can take? And what is the maximum number of iterations for 

the loop? With these two values, then we can multiply them together to get the total time for 

the loop. If we have one loop nested within another, then this leads to multiplication of the 

numbers of iterations; and if one loop is entirely after another, this leads to addition of their 

running times. 

This technique is sound, but sometimes it ends up overcounting, particularly if 

the maximum time per iteration is much more than the average time per iteration. 



Consider, for example, the problem of computing the number of lattice points within a circle 

— that is, the number of points whose coordinates are both integers. A circle of radius 5, for 

example, contains 69 lattice points, as drawn below. 

 

We will count the lattice points by first determining the number within the upper quadrant, 

counting those on the x-axis but not on the y-axis — i.e., those in the darkened box above. 

We can then multiply this by 4, to take care of the other quadrants (the lightened boxes), 

and then we can add 1 to account for the origin. Here is the code. 

// Count integer-coordinate points in radius-r circle 

public static int countLatticePoints(int r) { 

    int count = 0; 

    int y = 0; 

    for(int x = r; x > 0; x--) { 

        while(x*x + y*y < r*r) y++; 

        count += y; 

    } 

    return 4 * count + 1; 

} 

A simple analysis of this code is that the inner loop will always iterate at most r times 

before x² + y² exceeds r². Thus, the inner loop takes O(r) time. The outer loop 

has r iterations, giving a total of O(r²) time. 

While technically correct, O(r²) is not the best possible bound for this code. In particular, 

since y begins at 0 at the method's beginning and never decreases, the totalnumber of 

iterations of the inner loop — across all iterations of the outer loop — is r. Thus, the total 

amount of time spent on the inner loop during the method is O(r); and the total time spent 

on the outer loop, excepting the inner loop, is O(1) per iteration, over r iterations for a total 

of O(r). Thus, the total time for the loop is O(r). 



4.2. Case study: Sorting an array 

Sorting a list is one of the most fundamental problems in computer science. The basic 

problem is this: Suppose we have a list of numbers. 

 

We want to reorder the list so that the numbers appear in increasing order. 

 

Sorting is fundamental to computer science for several reasons: First, real programs often 

need to sort data; second, sorting techniques prove to be a foundation for many other 

computational problems; and finally, the problem is relatively simple to analyze, but still 

complex enough to have some worthwhile intricacies. Thus, it is a perfect showcase problem 

for study and research. 

4.2.1. Simple algorithms 

There are many reasonable ways to approach the problem of sorting an array. Most of the 

obvious ones are also relatively easy to analyze. Take, for example, theselection 

sort algorithm. In this approach, we find the smallest element, and swap it into the first 

position. 

 ⇒  

Then we find the smallest element right of the first position and swap it into the second 

position. 

 ⇒  

Then we find the smallest element right of the second position and swap it into the third 

position. 

 ⇒  



We continue doing this, each time determining the proper number to place in the next 

position of the array, until we've completed the array. 

 ⇒  

Writing this in a program is relatively straightforward. 

public static void selectionSort(int[] data) { 

    for(int i = 0; i < data.length; i++) { 

        int min = i; 

        for(int j = i + 1; j < data.length; j++) { 

            if(data[j] < data[min]) min = j; 

        } 

        int t = data[min]; 

        data[min] = data[i]; 

        data[i] = t; 

    } 

} 

We use a variable i to track which position we are currently trying to swap into. To 

determine where we should swap from, we use a variable j that steps through every index 

above i, and every time we find a smaller element, we change min to refer to that element's 

index. After going through the inner loop over j's, then, min will hold the index of the 

smallest number in position i or beyond. This is the position that we swap with position i. 

Then we can proceed to the next i. 

In terms of running time, selection sort isn't very difficult to analyze. Each time we reach the 

inner loop, it takes O(n) time (at most n iterations, each taking O(1) time), and so each 

iteration of the outer loop takes O(n) time. There are n iterations of the outer loop, and so 

the total time for selection sort is O(n²). 

(You might object that using n as a bound for the inner loop's iterations is crude, and that 

this could affect the running time. You'd be right. But, in fact, n / 2 iterations of the outer 

loop involve at least n / 2 iterations of the inner loop, so the total time is at least O((n / 2)²) 

= O(n² / 4) = O(n²). In this case, then, the crude approximation yielded the best possible 

result anyway.) 

 
 



Insertion sort is an alternative sorting algorithm. For it, we keep the first segment of the 

array sorted, and we slowly grow this segment, element by element, until it encompasses the 

entire array. 

 

Segment starts with first element only. 

 

Then we grow it to the first two elements. 

 

Then the first three elements. 

 

Then the first four elements. 

 

… until the segment covers the entire array. 

Each time we want to expand the segment by an element, the only thing we need to do is 

to insert the new element into the already sorted list — hence the nameinsertion sort. The 

insertion process involves shifting the elements of the old segment that are greater than the 

new element up by one position, to make room for the new element's proper position. 

To implement this in a program, we need a variable to keep track of how large the current 

segment is; we'll use i for this. Each iteration, our goal is to increment i by one, which 

requires us to insert element i into the first i elements. To shift elements upward to make 

room, we'll use another variable, j, which will start at i − 1 and move down until 

element j is less than element i. 

public static void insertionSort(int[] data) { 

    for(int i = 1; i < data.length; i++) { 

        int t = data[i]; 

        int j = i - 1; 

        while(j >= 0 && data[j] > t) { 

            data[j + 1] = data[j]; 

            j--; 

        } 

        data[j + 1] = t; 

    } 

} 



Analysis of the speed of this algorithm proceeds similarly to that for selection sort: The 

inner loop takes a total of O(n) time (since j may have to go from n − 2 all the way down to 

0), and there will be n − 1 iterations of the outer loop, for a total of O(n²) time. 

One difference from selection sort is that insertion sort will sometimes go faster than at 

other times. As an extreme example, for arrays already in sorted order, there will be never 

be any iterations of insertion sort's inner loop, and so insertion sort will take O(n) time. 

This is unusual, though. For most orderings, insertion sort takesO(n²) time. Still, since 

there's a chance that it may go faster, programmers generally prefer insertion sort over 

selection sort. 

4.2.2. Mergesort 

The selection sort and insertion sort algorithms, along with most other intuitive techniques, 

take O(n²) time. It turns out, though, that a different algorithm calledMergesort does 

better. 

The Mergesort algorithm is based on the idea of recursion. In particular, given an array, we 

will first recursively sort the first and second halves of the array separately. Then we will 

merge the two halves together to attain our final result. 

1. We start with an array. 

 

2. Divide the array into two halves. 
 and  

3. Recursively sort both halves. 
 and  

4. Merge the sorted halves. 
 

Implementing Mergesort, as done in Figure 4.2, is really not too complex. Our method will 

take two indices as parameters, start and stop, representing which segment of the array to 

be sorted; this is so that the recursive calls can specify which segment to sort. These indices 

represent the first index inside the segment, and the first index after the segment. 

Figure 4.2: The Mergesort algorithm. 

// Sorts the segment start..(stop-1) of the array data. 

public void mergeSort(int[] data, int start, int stop) { 
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    if(stop - start <= 1) return;         // Base case: <= 1 element 

    int mid = (start + stop) / 2;         // Determine split point 

    mergeSort(data, start, mid);         // Recursively sort first 

    mergeSort(data, mid, stop);             //   and second half. 

 

    int[] other = new int[stop - start]; // Merge into another array. 

    int i = start; int j = mid;    // (track position in both halves) 

    for(int k = 0; k < other.length; k++) { 

        if(j >= stop || (i < mid && data[i] < data[j])) { 

            other[k] = data[i]; // (copy element of first array over) 

            i++; 

        } else { 

            other[k] = data[j]; // (copy element of second array over) 

            j++; 

        } 

    } 

 

    for(int k = 0; k < other.length; k++) { 

        data[start + k] = other[k];         // Copy other array back. 

    } 

} 

Dividing the array into two and recursively sorting both halves is simply a matter of finding 

where to split the segment (index mid) and making the recursive calls. The bulk of the 

implementation is spent in the merging. Here, we use two indices, i and j, referring to how 

far we've merged elements from the two half-segments. We copy elements from the half-

segments into another array, each time incrementing i or j, until the other array is filled. 

Finally, we copy all the elements from the merged array back into the original. 

Analyzing the speed of Mergesort involves analyzing the speed of a recursive algorithm, 

something we haven't seen before. For this, we'll first analyze the total amount of 

time neglecting the recursive calls. In the case of Mergesort, aside from the two recursive 

calls, the time is spent almost entirely within the merge and copy loops. If the incoming 

array has n elements, then the merge loop will involve n iterations, each taking O(1) time, 

and the subsequent copy loop will also involve n iterations, each taking O(1) time. The total 

is O(n + n) = O(n). This means that for some constant c, the time taken in Mergesort, aside 

from recursive calls, is at most c n. 

Of course, we need to include the time spent in recursive calls, too. To do this, we'll draw a 

recursion tree, writing for each node the amount of time spent inside that node — which 



we've just argued is c times the length of the array to be sorted in that node. The total 

amount of time spent will be the total of the times inside the nodes. 

Figure 4.3 diagrams the recursion tree for an array of eight elements, echoed to the right 

with the time spent inside each node. 

Figure 4.3: Analyzing Mergesort's performance. 

 

We want to find the sum of these times. As it happens, the easiest way to compute this sum 

is to compute the sum for each level of the tree (c n) and to multiply this by the number of 

levels (4 in this case, but for general n it is 1 + log2 n). Thus, the total amount of time for 

Mergesort is at most c n (1 + log2 n) = O(n log n). 

A O(n log n) bound on speed is much better than a O(n²) bound, because the value of 

log n will be quite small even for very large n. If n is a million (106), for example, log2 n will 

be roughly 20. Thus, n log n would be roughly 20 billion (2 × 107), while n² would be a 

trillion (1012) — far, far more. Mergesort happens to be slower than insertion sort or 

selection sort for small arrays, because the constant coefficient tends to be rather large, but 

the better big-O bound will make up for this asn increases, and so Mergesort will 

be much faster for large arrays. 

4.2.3. Quicksort 

Mergesort has one shortcoming, though, which we can hope to improve upon: It copies data 

around quite a bit. Each recursive call moves every array element during the merge process 

(and in our implementation, every array element is in fact moved twice). The result is that 

the algorithms performs O(n log n) data movements. By comparison, selection sort requires 

only O(n) movements — though this comes at the expense of spending quite a lot of time 

determining which movements to make. Still, there is hope for doing better. 

An alternative sorting algorithm, Quicksort, retains the O(n log n) performance while 

avoiding all this wasteful copying; the result is an algorithm that often does better than 

Mergesort. The Quicksort algorithm works by first partitioning an array before the recursive 
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calls. We partition the array by randomly selecting a pivot value from the array and then 

rearranging the array into two segments: The first segment will hold the values less than the 

pivot, and the second will hold values more than the pivot. (Values equal to the pivot can be 

placed into either segment.) Recursively sorting both segments will result in the entire array 

being sorted. 

1. We start with an array. 

 

2. Randomly select a pivot, say 12. 
 

3. Partition array into two segments. 
 and  

4. Recursively sort both segments. 
 and  

Writing quickSort to sort a segment of an array is relatively straightforward, except for the 

partitioning step. The following implementation relies on a methodpartition that would 

select a pivot randomly, reorder the segment of the array based on the pivot, and return the 

breakpoint between the two subsegments thus generated. 

// sorts data[start..(stop-1)] 

public static void quickSort(int[] data, int start, int stop) { 

    if(stop - start > 1) { 

        int pivot_pos = partition(data, start, stop); 

        quickSort(data, start, pivot_pos); 

        quickSort(data, pivot_pos + 1, stop); 

    } 

} 

The trick to writing an efficient Quicksort program is to implement partition in a way that 

minimizes the movement of array elements. Figure 4.4 contains such an implementation. 

Figure 4.4: The partition method. 

private static Random rand = new Random(); 

 

// partition data[start..(stop - 1)] based on randomly chosen 

// pivot, returning pivot's position following partition 

private static int partition(int[] data, int start, int stop) { 

    int pivot_pos = start + rand.nextInt(stop - start); 
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    int pivot = data[pivot_pos];   // swap pivot into data[start] 

    data[pivot_pos] = data[start]; 

    data[start] = pivot; 

 

    int low = start + 1; // data[start..(low-1)] <= pivot 

    int high = stop - 1; // data[(high+1)..(stop-1)] >= pivot 

    while(low <= high) { 

        if(data[low] <= pivot) { 

            low++; 

        } else if(data[high] >= pivot) { 

            high--; 

        } else { 

            int t = data[low];      // swap data[low] and data[high] 

            data[low] = data[high]; 

            data[high] = t; 

            low++; 

            high--; 

        } 

    } 

    data[start] = data[low - 1]; // swap data[low - 1] and data[start] 

    data[low - 1] = pivot; 

    return low - 1; 

} 

Our partition code uses two indices, low and high, which start on opposite sides of the 

segment and move toward each other as the method continues. Each time through the loop, 

we'll advance low if the element to which it refers belongs in the lower segment, and we'll 

advance high if the element to which it refers belongs in the upper segment. But if they both 

refer to elements that belong on the opposite side, then we swap those two elements, and 

advance both low and high toward the middle. 

Writing and understanding the partition method is most easily done by thinking about the 

loop invariant. The implementation of Figure 4.4 helpfully documents how it works by 

mentioning the invariant in comments, placed next to the declarations of low and high. 

Analyzing Quicksort is more complicated than analyzing Mergesort, since the recursive calls 

work on arrays of differing lengths (usually). As with Mergesort, the amount of time per call, 

outside of the time within recursive calls, is O(n). Each level will sum to at most c n, as 

before, but it's much more difficult to bound the depth of the recursion, because the depth 
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depends on the random choices of pivots. In fact, though, the depth is O(log n), and so the 

total time taken is O(n log n). (Section 5.2.4 contains a formal proof of this fact.) 

4.2.4. Optimal sorting 

In this chapter, we've seen two O(n²) algorithms and two O(n log n) algorithms for sorting. 

Since sorting is such an important problem, you should naturally wonder: Is this the best we 

can do? Can we become rich and famous by inventing a better technique taking, say, O(n) 

time? We would even settle for O(n sqrt(log n)). 

It should be clear that doing better than O(n) time is impossible. After all, it could be that 

all n elements are in the wrong positions, and we would have to move them all. While this 

prevents us from hoping for a bound better than O(n), it doesn't discourage us from hoping 

for O(n) itself, though. 

It turns out, though, that any comparison-based sorting algorithm will not possess a bound 

better than O(n log n). The proof is fairly interesting. First, we note that nnumbers can be 

ordered in n! ways. (The factorial of a integers n, written as n!, is the product of the integers 

up to n: 

n! = 1 ⋅ 2 ⋅ 3 ⋅ … ⋅ (n − 1) ⋅ n. 

After all, we have n choices for the first number in the array; for each of those, we have n − 1 

choices for the second; and for each of those, n − 2 choices for the third; and so on. 

Each of these n! different orderings require a different set of actions by a sorting algorithm, 

so the sorting algorithm must distinguish among them. However, the only type of question a 

comparison-based algorithm can ask is how two elements compare — a yes/no question that 

has only two possible responses. If we ask at most kquestions, then, we can only receive 

2k different sets of answers, distinguishing between at most 2k of the n! possible orderings. 

To distinguish among the n! orderings with at most k questions, then we will need k to be 

such that 2k ≥ n! — or, equivalently, we need k ≥ log2 n!. The only question, then, is: How 

big is log2 n!? To answer this, we will use some approximations. 

log2 n! = log2 (n(n ⋅ (n − 1) ⋅ (n − 2) ⋅ … ⋅ 3 ⋅ 2 ⋅ 1) 

 
≥ log2 (n ⋅ (n − 1) ⋅ (n − 2) ⋅ … ⋅ (n / 2)) 

 
≥ log2 ((n / 2) ⋅ (n / 2) ⋅ (n / 2) ⋅ … ⋅ (n / 2)) 

 
= log2 (n / 2)

n / 2
 

 
= (n / 2) log2 (n / 2) 

 
= O(n log n) 
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The algorithm will have to make at least O(n log n) comparisons, so it must take at 

least O(n log n) time. Thus, the Mergesort and Quicksort algorithms provide the best 

possible big-O bounds on speed. 

4.3. Case study: Counting primes 

In Section 1.2.3, we considered the problem of counting the prime numbers up to and 

including an integer n. Now we'll analyze the efficiency of the algorithm we saw there, as 

well as another algorithm. 

4.3.1. Successive testing 

Figure 4.5 restates the method that we saw in Section 1.2.3. 

Figure 4.5: One method for counting primes. 

// Returns the number of primes that are <= n. 

public static int countPrimesTo(int n) { 

    List<Integer> primes = new ArrayList<Integer>(n); 

    primes.add(new Integer(2)); 

    for(int k = 3; k <= n; k += 2) { 

        if(testPrimality(k, primes)) primes.add(new Integer(k)); 

    } 

    return primes.size(); 

} 

 

// Tests whether k is prime using the primes listed. 

private static boolean testPrimality(int k, List<Integer> primes) { 

    for(int i = 0; true; i++) { 

        int p = primes.get(i).intValue(); 

        if(p * p > k) return true;   // we passed sqrt(k); k is prime 

        if(k % p == 0) return false; // we found a divisor; k is not prime 

    } 

} 

To analyze the algorithm's efficiency, we'll first analyze testPrimality. For an 

argument k, testPrimality's loop will involve at most sqrt(k) iterations, since by the time 

we get to the sqrt(k)th prime, the square of that prime will exceed k. Each iteration of that 

loop takes O(1) time. (This depends on the fact that ArrayList's get method takes O(1) time. 

If the code used a LinkedList instead, but still did not use an Iterator to iterate 
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though primes, then the bound would be O(k).) Thus, testPrimalitytakes O(sqrt(k)) time 

for an argument k. 

Now we can analyze countPrimesTo. Here, the loop involves (n − 2) / 2 = O(n) iterations. 

Each iteration includes a call to testPrimality with an argument that is at most n, 

taking O(sqrt(n)) time. Each iteration may also include a call to ArrayList's add method, but 

that method takes O(1) time. Thus, each iteration of thecountPrimesTo loop will take at 

most O(sqrt(n)) time. With O(n) iterations, this gives an overall time 

to O(n sqrt(n) = O(n3/2) 

(Actually, because of the occassional doubling, the time consumed by 

ArrayList's add method is not O(1) but O(n). However, the n / 2 calls to add previous to the 

doubling each take O(1) time, and so the average time per call is O(1). From a practical 

standpoint, we think of it taking O(1) time. 

You might reasonably wonder whether this is the best possible. After 

all, testPrimality stops much sooner than the sqrt(k)th iteration: For example, for every 

multiple of 3, it stops in the second iteration. This could possibly lead to a bound much 

better than O(n3/2). 

In fact, our bound is pretty close to being the best possible. For those interested, here is the 

outline of an argument. We consider only the second half of the numbers tested 

in testPrimality. The number of primes up to n is roughly n / ln n, and while more of them 

will be below n / 2 than above it, they're spread evenly enough that roughly half of will be 

above n / 2. For these n / (2 ln n) primes, testPrimality will need to go through 

primes p until p exceeds at least sqrt(n / 2). There areO(sqrt(n / 2) / ln (n / 2)) such primes. 

Thus, the total amount of time for countPrimesTo is roughly at least 

(n / (2 ln n)) ⋅ (sqrt(n) / (sqrt(2) ln (n / 2))) = n sqrt(n) / (2 sqrt(2) ln(n) ln(n / 2)) 

= O(n3/2 / log² n). 

We cannot expect, then, to get a bound better than O(n3/2 / log² n) using the algorithm 

of Figure 4.5. 

This is a bit better than the O(n3/2) bound that we actually showed, but we won't worry 

about the difference here. As it happens, it's possible to show that our lower 

bound O(n3/2 / log² n) is the true bound, but we won't demonstrate this for two reasons: The 

argument is rather difficult, and our next algorithm is quite a bit faster anyway. 

4.3.2. Eratosthenes' sieve 
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Eratosthenes (276–194 B.C.), who invented latitude and longitude and measured the 

circumference of the earth and the distance to the sun and moon, also invented his own 

technique for identifying prime numbers, called Eratosthenes' Sieve. Figure 4.6 contains an 

implementation. (This is a modern adaptation: Eratosthenes, as it happens, did not write 

his algorithm using Java.) 

Figure 4.6: Eratosthenes' Sieve algorithm for counting primes. 

public static int countPrimesTo(int n) { 

    boolean[] isPrime = new boolean[n + 1]; // assume all are prime 

    for(int i = 2; i <= n; i++) isPrime[i] = true;                 // (A) 

 

    for(int p = 2; p * p <= n; p++) {                              // (B) 

        if(isPrime[p]) {                    // filter out multiples of p 

            for(int i = 2 * p; i <= n; i += p) isPrime[i] = false; // (C) 

        } 

    } 

 

    int count = 0;                          // count numbers left standing 

    for(int i = 2; i <= n; i++) {                                  // (D) 

        if(isPrime[i]) count++; 

    } 

    return count; 

} 

Loops A and D (as labeled in Figure 4.6) each take O(n) time total. Loop B has O(sqrt(n)) 

iterations; each iteration involves Loop C, which has roughly n / i iterations, each 

taking O(1) time. Since n / i is bounded by n, we can say that Loop C takes O(n) time, and so 

each iteration of Loop B takes at most O(sqrt(n)) time, for a total ofO(n sqrt(n)) = O(n3/2) 

time. Thus, since the algorithm does loop A, then B, then D, the total times is O(n + n3/2 + n) 

= O(n3/2). 

But we can do better: Note that the first time through Loop C, we'll take n / 2 iterations, the 

second time n / 3 iterations, the third time n / 5 iterations, and so on. Thus, the total 

amount of time spent in Loop C, summing across all iterations of Loop B, will be at most 

c n (1/2 + 1/3 + 1/5 + 1/7 + 1/11 + … + 1/sqrt(n)) 

for some constant c. We want some estimate of the sum of primes' reciprocals. Instead of 

dealing with primes, we can go ahead and add in all of the terms, giving us 
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c n (1/2 + 1/3 + 1/4 + 1/5 + 1/6 + … + 1/sqrt(n)) 

Adding in these extra terms makes our answer larger, but we are allowed to overestimate 

when computing a big-O bound. Now, we'll make use of the following mathematical fact. 

1/2 + 1/3 + 1/4 + 1/5 + 1/6 + … + 1/k ≤ ln k 

If you're familiar with the integral calculus, this fact can be easily be shown. Consider 

the following diagram: 

 

The rectangles represent the different terms of the sum: Each has a width of 1 and a height 

of 1/j for successive j. We want to find the area of the rectangles. To get an upper bound on 

the area, we draw the curve f(x) = 1/x between x = 1 and x = n, which is always above the 

rectangles. The area under the curve is ∫1
n 1/x dx = [ln x]1

n = ln n. 

Substituting this for the total time executing Loop C, we have 

c n ln sqrt(n) = c n (1/2) ln n = O(n log n). 

The rest of the method takes O(n) time, so the overall the bound is O(n log n). 

(We could have lost something in our estimate when we bounded the sum of primes' 

reciprocals by the sum of all reciprocals. In fact, there is an obscure mathematical fact that 

the sum of reciprocals of primes up to k is approximately (ln ln k) + 0.2614…. Using this 

fact, we get an even better bound of O(n log log n).) 

4.4. Memory usage analysis 

Although computer scientists don't talk about it nearly as often, big-O analysis can be 

applied to memory as well as time. For example, the prime-counting program ofFigure 

4.5 requires O(n / log n) memory, since it stores all the primes up to n in a list, and there 

are O(n / log n) such numbers. 

Actually, this memory bound isn't technically correct. If n becomes really big, then we 

need to take into account the fact that the representation of the really big prime 
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numbers don't actually take O(1) memory: A number k requires O(log k) memory to store k's 

digits. Thus, really, the amount of memory needed isO(n). 

But if we were going to worry about that, then our time analysis should also take into 

account the fact that dividing two really big numbers doesn't take O(1) time either: The long 

division algorithm takes O(log² n) time. It simplifies things a lot — and for most real 

problems it doesn't really hurt us — if we just disregard these details and assume that each 

arithmetic operation take O(1) time, and storing each number takes O(1) space. 

We can do better. Consider the algorithm of Figure 4.7. 

Figure 4.7: A memory-free method for counting primes. 

public static int memorylessCountPrimes(int n) { 

    int count = 1; 

    for(int k = 3; k <= n; k += 2) { 

        if(testPrimality2(k)) count++; 

    } 

    return count; 

} 

 

private static boolean testPrimality2(int k) { 

    if(k % 2 == 0) return k == 2; 

    for(int i = 3; i * i <= k; i += 2) { 

        if(k % i == 0) return false; 

    } 

    return true; 

} 

In this algorithm, we don't store prime numbers in memory, and a result, we use only O(1) 

memory. (Again, the real bound would be O(log n) if we were worrying about storing all the 

different digits of n. But we're not worrying about that.) This memory savings comes at the 

expense of a few more divisions, becausetestPrimality2 can't restrict its tests to only the 

primes as with the testPrimality code in Figure 4.5. However, dividing only by primes 

doesn't really save all that much in terms of time: The Figure 4.5 algorithm takes 

roughly O(n3/2 / (log n)²) time, whereas the Figure 4.7 algorithm takes O(n3/2) time. Our 

new algorithm is moderately slower than before, but it uses much less memory. 

This is a general principle called the memory versus speed tradeoff. It refers to the fact that 

for many problems, increasing the usage of memory often allows developing faster 

algorithms. Sometimes the tradeoff is clear; sometimes it is less so. 
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Let's look at another example of the memory versus speed tradeoff. Consider the problem of 

stealing from a jewelry store, where we have a bag that can carry a certain amount of weight, 

and we want to select the most valuable subset of the jewelry in the store fitting into our 

bag. 

One approach to this is to iterate through all the subsets of the jewelry, using a recursive 

approach similar to the printSubsets method of Section 2.1. If we have npieces of jewelry 

to choose from, there will be 2n subsets to consider, so that method will take O(2n) time. 

Since the method only remembers the current subset at any instant as it progresses, it 

requires O(n) memory. 

An alternative approach is to determine the best subset for each possible capacity, working 

ourselves up toward the bag's capacity, which we'll call C. We begin at 0, for which we can't 

carry any jewelry, a choice that has value 0. Then we progress to 1, where the best subset is 

the most valuable piece weighing 1 gram. Then we progress to 2, where the best subset is 

either the most valuable piece weighing 2 grams, or the best 1-gram subset, plus the most 

valuable 1-gram piece not in the best 1-gram subset. We can continue doing this. 

In this alternative approach, we'll require O(C n) time: We go through C different capacities; 

for each capacity k, we consider each of the n pieces, seeing the value of including that piece 

(of weight w) in with the best subset weighing k − w grams, if that subset doesn't already 

contain the piece in question. This O(C n) bound is likely to be much better than O(2n); but 

it comes at the expense of memory: It requires O(C n) memory, whereas the all-subsets 

approach requires only O(n) memory. 
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