
Data & Procedure  Hashing 

While trees are a useful data structure for implementing the Set ADT, practitioners tend to 

use the hash table instead. A tree maintain its elements in order, which is useful in some 

cases. Hash tables do not maintain any order; this flexibility, as we shall see, results in an 

opportunity for improved speed. 

Before investigating the technique of hashing, though, we'll first examine the important 

Map ADT, another ADT for which both trees and hashing are useful. 

6.1. The Map ADT 

The Map ADT is designed for cases where a program wants to remember associations 

between objects — that is, where the program wants to maintain a mapping from some 

collection of objects to another set of objects. 

6.1.1. Lookup tables 

Before we look at the general Map ADT, we first consider a simple structure called a lookup 

table. Here, we use an array to associate values with a small range of integers. 

An example involving a lookup table would be a program to compute the mode of a set of 

test scores — that is, the score that occurs most often within a list. There are several ways of 

computing the mode without using a lookup table. The simplest technique is to go through 

each element, and for each element count how many other times that element occurs in the 

list. We return the element with the maximum count. This technique, with two nested loops, 

each iterating through all elements of the list, takes O(n²) time for n test scores. 

We can improve this dramatically, still without using a lookup table, by sorting the list: 

After sorting, all repeated scores will be adjacent to one another, and we have only to go 

through the sorted list to find the longest sequence. Sorting the list takes O(n log n) time, 

and finding the longest sequence takes O(n) time; thus the total time for this algorithm 

is O(n log n). 

Figure 6.1: Finding the mode of an array using a lookup table. 

public static int findMode(int[] scores) { 

    // compute # occurrences of each score 

    int[] count = new int[101]; 

    for(int i = 0; i < count.length; i++) count[i] = 0; 
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    for(int i = 0; i < scores.length; i++) count[scores[i]]++; 

 

    // now find maximum # occurrences 

    int max = 0; 

    for(int i = 1; i < count.length; i++) { 

        if(count[i] > count[max]) max = i; 

    } 

    return max; 

} 

But we can do better using a lookup table. Since the test scores will fall within a restricted 

range, we can create an array that will track the number of occurrences of each test score. 

After determining the proper values for this array, we can easily find which element has the 

largest value. Figure 6.1 illustrates this technique. The first and last loops of Figure 6.1 both 

take O(1) time relative to n: Both have at most 101 iterations, each iteration taking O(1) 

time, for a total of O(101 ⋅ 1) = O(1) time. The middle loop, though, has n iterations, so it 

takes O(n) time. 

But suppose we want to be able to find the mode from a list of strings? Or of points? Or of 

cities? We might hope to use the lookup table again, but we couldn't because a lookup table 

relies on the elements of the list being used as indices into an array, and only ints can be 

used as array indices. What we want is a different kind of array — one in which any type of 

data can be used as an index. This, in fact, is precisely the purpose of the Map ADT that we'll 

now examine. 

6.1.2. The Map ADT 

The two abstract data types we have seen thus far, the List ADT and the Set ADT, operate on 

collections of elements — an ordered collection for the List ADT, an unordered collection for 

the Set ADT. The Map ADT, however, does not deal with a collection of elements: It 

corresponds to a mapping from some values (called keys) to other values. This is 

appropriate when an algorithm wants to associate values together. In our example of 

computing a mode, we want to associate integer counts with values found in the source list; 

the source values will be the keys to the map. 

The Map ADT contains the following operations. 

 get(k) to retrieve the value associated with the key k. 

 put(k, x) to associate the value x with the key k. 

 remove(k) to remove any value associated with the key k. 

 containsKey(k) to query whether k has a value associated with it. 
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 keySet to get the set of keys with associated values. 

 size to get the number of keys with associated values. 

As you would expect, java.util contains a Map interface corresponding to the Map ADT. In 

contrast to the generic classes and interfaces we have seen so far, which have all had one 

generic parameter (like the <E> of List<E>), the Map interface has two generic 

parameters, K and V. 

public interface Map<K,V> { 

    public V get(K key); 

    public V put(K key, V value); 

    public V remove(K key); 

    public boolean containsKey(K key); 

    public Set<K> keySet(); 

    public int size(); 

} 

6.1.3. Using a Map 

In addition to the Map interface, the java.util package also includes a TreeMap class 

implementing it. The TreeMap works similarly to a TreeSet, but each tree node in a 

TreeMap contains both a key and a value. The nodes are kept in the tree based on their keys' 

order. 

We can see how to use the Map interface, and the TreeMap implementation of that 

interface, by going back to our example of finding a mode. Suppose we want to find the most 

commonly occurring string within an array of names. According to the logic of the algorithm 

earlier, we would want a mapping from strings to integers. And so we'd use 

a Map<String,Integer>, as illustrated in Figure 6.2. This isn't a straightforward line-by-line 

translation, but but it does follow the same basic algorithm. 

Figure 6.2: Finding the mode of an array using a hash table. 

public static String findMode(String[] names) { 

    // compute # occurrences of each score 

    Map<String,Integer> count = new TreeMap<String,Integer>(); 

    for(int i = 0; i < names.length; i++) { 

        if(count.containsKey(names[i])) { 

            int oldCount = count.get(names[i]).intValue(); 

            count.put(names[i], new Integer(oldCount + 1)); 

        } else { // first occurrence found 
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            count.put(names[i], new Integer(1)); 

        } 

    } 

 

    // now find maximum # occurrences 

    String mode = null; 

    int modeCount = 0; 

    for(Iterator<String> it = count.keySet().iterator(); it.hasNext(); ) { 

        String name = it.next(); 

        int nameCount = count.get(name).intValue(); 

        if(nameCount > modeCount) { 

            mode = name; 

            modeCount = nameCount; 

        } 

    } 

    return mode; 

} 

For the TreeMap class, the get and put operations each take O(log n) time. Thus, each 

iteration of the first loop takes O(log n) time; there are n iterations, for a total ofO(n log n) 

time for the first loop. Likewise, the second loop takes O(log n) time per iteration, and there 

are at most n iterations, for O(n log n) time. Thus, overall, this approach takes O(n log n) 

time. 

6.2. Hash tables 

While a TreeMap implements the get and put methods in O(log n) time, the equivalent 

operations for a lookup table take only O(1) time. Unfortunately, the lookup table is 

applicable only when the keys happen to be small integers. The idea of hashing is to figure 

out a way to leverage the lookup table's performance for other types of keys. This leads to 

the HashMap class, an alternative implementation of the Map interface. In fact, because 

HashMaps are faster (and, because they don't involve the Comparable interface, easier to 

use), programmers use HashMap much more often than TreeMap in practice. The only 

advantage of TreeMaps is that they keep their keys in order, but this is not usually very 

important. 

6.2.1. Concepts 



Hashing relies on assuming a hash function, which maps keys to integers that can then be 

used as indices into a lookup table. Ideally, all different keys would hash to different 

integers, while any two equal keys would hash to the same integer. 

Suppose that we want a map between U.S. states' postal abbreviations (Strings) and the 

states' capitals (also Strings). Suppose, also, that we have an ideal hash function that maps 

each state abbreviation to the position of the state when states are listed in alphabetic order 

by their full name; thus, Alabama (AL) maps to 0, Alaska (AK) maps to 1, etc. 

We might tell a HashMap variable map to map Arkansas to Little Rock. The HashMap would 

first query the hash function for the code for AR, which would be 3 in this case. Then it 

would deposit the associated value into an array. 

map.put("AR", "Little Rock"); 

 

You can see that the HashMap is simply a lookup table with an added step of applying the 

hash function to any key to determine the index within the lookup table. 

If later we decide to map Alaska to Juneau, we can do that. 

map.put("AK", "Juneau"); 

 

Now, given a requested to retrieve Arkansas's state capital (map.get("AR")), we would 

query the hash function for Arkansas's hash code (still 3), go to that entry of the table, and 

return the string found there (Little Rock). 

We can continue putting states' capitals into the table, but what do we do when we get to 

states whose hash codes fall outside the array's bounds? For example, what about Kansas 

(KS), whose hash code is 15, even though the array has only 13 entries? We'll map such a 

code into the desired range by taking the remainder when the code is divided by the array 

length; the remainder will be at least zero but less than the array length, and so it will be a 

valid array index. For the Kansas key, we'd divide 15 by 13, getting a remainder of 2, and so 

we'd place Topeka at index 2 in the table. 



map.put("KS", "Topeka"); 

 

There are still other problems to address, though. Suppose we decide to map Texas (TX) to 

Austin. Texas has an index of 42, whose remainder is 3 when divided by 13. So we'd place 

Austin at index 3. 

map.put("TX", "Austin"); 

 

Note that this replaced Little Rock. Now, if we ask our map for Arkansas' capital 

(map.get("AR")), we'll get Austin. 

What we have here, with different keys mapping to the same hash table entry, is called 

a collision. Collisions are not desirable, but they're unavoidable. To deal with them, we'll 

instead put a list at each node, called a bucket. In each bucket, we'll have entries, each 

containing a key that maps into that bucket and the value associated with that key. 

 

In fact, collisions are quite common. Suppose we decided to hash people based on 

their birthday. There are 366 different possible hash values, and this hash function is a good 

one in that it distributes people relatively evenly across them. Even so, an analysis of 

probabilities says that there will likely be a collision by the time we reach 23 different 

people. 

This phenomenon, in fact, is called the birthday paradox. It's not a real paradox, but it gets 

that name because the fact runs counter to many people's intuition. The same analysis 



underlying the birthday paradox leads to the conclusion that any mapping from one set to 

another, even if it is quite good, is bound to lead to some collisions. 

Now, if we're asked to retrieve the capital associated with Texas, we'll go to the bucket at 

index 3, and step through the list until we find an entry with Texas as the key. Once found, 

then we'll return the value in that entry — Austin. 

6.2.2. Implementing HashMap 

In order to be able to implement a hash table, we must have some way to access the hash 

function. A hash function must return the same value whenever two instances are equal. 

Different classes have different definitions of equality between instances. (Think of the 

different notions of equality between String objects and between Integer objects.) Thus, 

there is no way to write a generic hash function that covers all possible types of keys. 

Java's approach to this is to define two methods — equals and hashCode — in the Object 

class, which all classes ultimately extend. 

public boolean equals(Object other) { ... 

public int hashCode() { ... 

The default implementations (as the methods are defined in Object) treat two objects as 

equal exactly when they are the same object — i.e., they are at the same location of memory. 

This matches the notion of equality used with the == operator: The equals method defined 

in the Object class returns true whenever this == other. A class might override 

Object's equals method to define a different notion of equality; the String class is an 

example, because two Strings should be regarded as equal whenever they represent the 

same sequence of letters, even if they lie at different locations in memory. But if it 

overrides equals, it should also override hashCode so that two objects that equals say are 

equal will also get equal hash codes. (The String class overrides both.) 

The HashMap class will include a private instance variable table, which will be an array of 

HashEntries, each being the head of a list of all entries in the bucket. (The 

name table comes from the term hash table, which is a common name for this data 

structure.) Whenever we want to look up a key named key, we want to access the bucket (to 

be named bucket) corresponding to that key's hash code. This is easy enough. 

bucket = table[key.hashCode() % table.length]; 

This uses the remainder operator (%) to get the remainder when the hash code is divided by 

the array's length. This does not exactly work, though, because the hash code may be 



negative, and Java specifies that the remainder operator, when applied to a negative 

number, computes a negative remainder (e.g., (-8) % 3 yields −2). We can avoid this 

possibility by adding table.length to the remainder should it turn out to be negative. 

int index = key.hashCode() % table.length; 

if(index < 0) index += table.length; 

bucket = table[index]; 

Within each bucket, we want to store objects that associate keys and values together. For 

this purpose, we'll use the simple HashEntry class. 

class HashEntry<K,V> { 

    private K key; 

    private V value; 

    private HashEntry<K,V> next; 

 

    public HashEntry(K k, V v, HashEntry<K,V> n) { 

        key = k; value = v; next = n; 

    } 

 

    public K              getKey()      { return key; } 

    public V              getValue()    { return value; } 

    public void           setValue(V v) { value = v; } 

    public HashEntry<K,V> getNext()     { return next; } 

    public void           setNext(HashEntry<K,V> v) { next = v; } 

} 

Note that the class has no setKey method. This is intentional: Once we insert an entry into a 

bucket, we should never change the key associated with it, because a different key would 

likely belong in another bucket instead. 

With the HashEntry class defined, we can now talk about the proper type for a bucket: Each 

bucket is a HashEntry, which may itself be the head of a list of HashEntries. Thus, the 

instance variable table is an array of HashEntries. 

private HashEntry<K,V>[] table; 

We'll use this within our HashMap implementation found in Figure 6.3, which illustrates 

how the implementation built into java.util works. 

Figure 6.3: The HashMap class. 
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public class HashMap<K,V> implements Map<K,V> { 

    private HashEntry<K,V>[] table; 

    private int curSize; 

 

    public HashMap() { 

        table = (HashEntry<K,V>[]) new HashEntry[13]; 

        curSize = 0; 

    } 

 

    private int getIndex(K key) { 

        int ret = key.hashCode() % table.length; 

        if(ret < 0) ret += table.length; 

        return ret; 

    } 

 

    public int size() { return curSize; } 

 

    public V get(K key) { 

        for(HashEntry<K,V> n = table[getIndex(key)]; n != null; n = n.getNext

()) { 

            if(n.getKey().equals(key)) return n.getValue(); 

        } 

        return null; 

    } 

 

    public boolean containsKey(K key) { 

        for(HashEntry<K,V> n = table[getIndex(key)]; n != null; n = n.getNext

()) { 

            if(n.getKey().equals(key)) return true; 

        } 

        return false; 

    } 

 

    public V put(K key, V value) { 

        int index = getIndex(key); 

        for(HashEntry<K,V> n = table[index]; n != null; n = n.getNext()) { 

            if(entry.getKey().equals(key)) { 

                V old = entry.getValue(); 

                entry.setValue(value); 

                return old; 



            } 

        } 

        table[index] = new HashEntry<K,V>(key, value, table[index]); 

        curSize++; 

        return null; 

    } 

 

    public V remove(K key) { 

        int index = getIndex(key); 

        HashEntry<K,V> prev = null; 

        for(HashEntry<K,V> n = table[index]; n != null; n = n.getNext()) { 

            if(n.getKey().equals(key)) { 

                if(prev == null) table[index] = n.getNext(); 

                else             prev.setNext(n.getNext()); 

                curSize--; 

                return n.getValue(); 

            } 

            prev = n; 

        } 

        return null; 

    } 

 

    // keySet and iterator methods omitted 

} 

6.2.3. Performance 

Hast fast is a HashMap? Its performance depends heavily on how big the buckets are. If the 

hash function is reasonably good, then all buckets will have roughly the same size. Assuming 

this, each bucket used in our Figure 6.3 implementation will have roughly n / 13 entries, 

since that implementation uses only 13 buckets. The getand put methods both rely on 

iterating through the relevant bucket's entries; since they have close to n/13 = O(n) entries, 

this means that the methods take O(n) time. Such performance is unacceptable. 

The HashMap that is actually implemented in the java.util package will grow its table we 

add more entries to it, just as an ArrayList grows as it receives more values. In particular, 

when the number of entries reaches 75% of the number of buckets, the next call to put will 

create a new array for table approximately twice as long as before, and it will hash all the 

previous entries into their newly appropriate buckets. As with ArrayLists, this will happen 
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infrequently enough that the O(n) time taken by this doubling procedure adds only O(1) 

time to put on average. The modified put method is in Figure 6.4. 

Figure 6.4: When the table is 75% full, put doubles the table length. 

public V put(K key, V value) { 

    int index = getIndex(key); 

    for(HashEntry<K,V> n = table[index]; n != null; n = n.getNext()) { 

        if(entry.getKey().equals(key)) { 

            V old = entry.getValue(); 

            entry.setValue(value); 

            return old; 

        } 

    } 

    if(curSize >= table.length * 3 / 4) { // double table length 

        HashEntry<K,V>[] oldTable = table; 

        table = (HashEntry<K,V>[]) new HashEntry[table.length * 2]; 

        index = getIndex(key); 

        for(int i = 0; i < oldTable.length; i++) { 

            HashEntry<K,V> n = oldTable[i]; 

            while(n != null) { 

                HashEntry<K,V> next = n.getNext(); 

                int ni = getIndex(n.getKey()); 

                n.setNext(table[ni]); 

                table[ni] = n; 

                n = next; 

            } 

        } 

    } 

    table[index] = new HashEntry<K,V>(key, value, table[index]); 

    curSize++; 

    return null; 

} 

(The 75% amount is called the load factor. Java's HashMap includes constructors that allow 

you to customize how large the initial table is and what the load factor is, for programmers 

who need to tune the performance of their programs. The defaults usually work well enough 

in practice, though.) 

With this doubling operation in place to ensure that the average bucket has O(1) length, 

both get and put (and, for that matter, remove and containsKey) take O(1) time, assuming 
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that the hash function being used distributes keys approximately equally across the buckets. 

The assumption of equal distribution is important, here: In the worst case, a poor hash 

function might end up assigning all keys to the same bucket. In this case, even though the 

average bucket may have O(1) length, the only bucket ever used will have O(n) entries, and 

so the methods take O(n) time. In a moment, we'll investigate how to define good hash 

functions to avoid such performance. 

Given a good hash function, though, HashMap provides O(1) performance for get and put, 

which is an improvement over TreeMap's O(log n) performance. So why would anybody 

ever use TreeMap instead? HashMaps do have one disadvantage: They don't maintain any 

order among the elements in the key set. Moreover, with the doubling operation, the order 

may change over time. Thus, TreeMap is suitable for cases where the keys should be 

maintained in a particular order, or where for some reason the order of the keys, though not 

important, should at least remain consistent. In practice, such cases are relatively rare, and 

thus HashMap is usually the better choice. 

The java.util library also defines a HashSet class implementing the Set interface, which 

provides O(1) performance for Set's add, remove, and contains operations, assuming a good 

hash function. This, too, is a marked improvement over TreeSet; but again, HashSet has the 

disadvantage that it doesn't maintain the values in any consistent order. In cases where the 

order is unimportant (and these happen more often than cases where order matters), 

HashSet is a better choice than TreeSet. 

6.3. Hash functions 

Until now, we have assumed that a good hash function was already implemented for us. The 

classes built into Java's libraries, indeed, already have good hash functions defined. 

But when we define our own classes that we might possibly use as keys to hash tables, then 

we need to worry about whether our hash function is suitable. The hash function needs to 

satisfy two requirements. 

 The hash code assigned to an object should be consistent over time. For example, we 

can't simply return a newly generated random number each time hashCodeis called. 

If we had such a hash function, then keys would become lost in the hash table. 

One consequence of this is that the hash function should not depend on any data 

within the object that could possibly change in the future. 



 The hash codes should be consistent with the behavior of the equals method. That is, 

if two objects are equal according to equals, then their hash codes should also be 

equal. 

This rule has an important consequence: If at any time you want to override 

Object's equals method, then you should also override its hashCode method if there 

is a reasonable chance that you or somebody else will want to use objects of the class 

as keys in a hash table. 

In addition to these two required properties, there is also one property that is highly 

desirable but not really achievable. 

 If two objects aren't equal according to equals, then their hash codes should not be 

equal. 

There are many situations where this property is impossible to satisfy: Consider the 

String class as an example. There are many more strings than there are validints, 

and so we could not possibly map every possible distinct string into a different int. 

Since the property is impossible to satisfy, the most we can hope for is that two 

unequal objects are likely to have unequal hash codes. (Fortunately, 

String's hashCode method has this property.) 

As an example where you would want to override Object's hashCode method, consider a 

class to represent points with two integer coordinates. 

public class Point { 

    private int x; 

    private int y; 

 

    public Point(int x, int y) { 

        this.x = x; 

        this.y = y; 

    } 

 

    public int getX() { return x; } 

    public int getY() { return y; } 

 

    public boolean equals(Object other) { 

        if(!(other instanceof Point)) return false; 

        Point o = (Point) other; 

        return o.x == this.x && o.y == this.y; 



    } 

} 

In this case, we overrode equals because we want two points to be regarded as equal any 

time that their coordinates match. And whenever we override equals, we should 

override hashCode also. 

So how can we define hashCode so that any two equal points receive the same hash code? 

One simple technique is to define the hash code be the point's x-coordinate. 

public int hashCode() { 

    return x; 

} 

This, however, means that any two points with the same x-coordinate get the same hash 

code, even if they have different y-coordinates. But it seems reasonably likely that in real-

world scenarios we might end up with a HashSet or HashMap involving a cluster of Points, 

of which several would share the same x-coordinate. Thus, while this is a valid hash 

function, it is not a good one. In general, a hash function ought to take into account all the 

data that the equals method takes into account; here, the equals method relies in part of 

the points' y-coordinates, so we should probably include y in our computation for hashCode, 

too. 

We can write such a hash function by simply adding the x- and y-coordinates. 

public int hashCode() { 

    return x + y; 

} 

This, though better, still has a shortcoming: Again, consider the possibility of a cluster of 

points. All points lying on a reverse diagonal (i.e., a line of slope −1) will share the same 

hash code. For example, points (4, 5) and (3, 6) receive the same hash code, even though 

they are still rather close. 

We can improve the function by multiplying the x-coordinate by some coefficient. 

public int hashCode() { 

    return x * 31 + y; 

} 



Now, two points will receive the same hash code only if they lie on the same line with slope 

−31. With integer coordinates, such points would be relatively far apart: For example, the 

closest points to (4, 5) with the same hash code are (3, 36) and (5, −27). It seems unlikely 

that somebody would happen to have a set including many such points, so this is a 

reasonably good hash function. (Technically, due to issues with arithmetic going beyond the 

range of valid integers, there are other situations where two points receive the same hash 

code. Having two such points in the same set, though, is unlikely, and so we don't need to 

worry about it.) 

This technique of computing hash codes — taking each relevant data member, multiplying 

them by very different coefficients, and adding the results together — is a common one, 

because it is both simple and it provides good results in practice. In fact, 

the hashCode method defined by Java's designers for String is another good example of this 

technique. One string is equal to another only if all of the characters of its string match the 

other; hence, its hash function ought really to incorporate information about all the 

characters of the string. Java's designers chose the function 

31k − 1 s0 + 31k − 2 s1 + … + 31 sk − 2 + sk − 1, 

where k is the string's length, and si is the character at position i of the string. 

 
 

With a bit of practice, defining a reasonably good hash function is easy, and that's all that's 

necessary for being able to use a hash table any time you want a Set or a Map. Hash tables 

constitute one of the most useful data structures in real computer programming: They are 

easy to use, efficient in their performance, and flexible in the types of objects they 

manipulate. 
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