
CYBER ATTACKS EXPLAINED: 
WEB EXPLOITATION 

 

Websites are no longer merely about having an “Internet presence” today, but are 

also used for commercial transactions and to transfer sensitive data. Such wide 

usage helps crackers gain more knowledge on vulnerabilities and exploitation 

techniques than before. Various security studies show that attacking websites to 

gain fame or money is definitely on the rise. This article explains various Web 

vulnerabilities and the attacks that exploit them. We will also learn a few 

techniques that could be incorporated by systems administrators to protect a firm’s 

Web infrastructure. 

Before discussing how Web servers are cracked, let us first look into the various 

components that form a complete Web portal. To begin, a Web server is a service 

that typically listens on Port 80. The client software, usually a browser, connects to 

the port and sends HTTP queries. The Web service responds by providing the 



requested content, such as HTML, JavaScript, etc. In some cases, the service could 

be configured to run on ports other than the default one, as a small step towards 

security. Web servers also may host services such as FTP or NNTP, which run on 

their own separate default port. Figure 1 shows how Web services map into the 

OSI layers. The HTTP protocol works at Layer 7, whereas HTTPS (Secure Socket 

Layer) works at Layer 6. 

 
Figure 1: Web services and OSI layers 

Modern Web applications often do not just deliver content in the form of simple 

Web pages. Business logic and data warehousing components such as a database 

server, application servers and middleware software are also used to generate and 

provide business-specific data to the website users. These components are usually 

installed and run on a separate set of servers, and may or may not share storage 

space with each other. Advanced Web application code may internally call Web 

services hosted on different servers, and the resultant page is delivered to the 

client. Web programmers also use cookies to maintain sessions and to store 

session-specific information in the client browser. 



Web hijacking 

It is fairly easy to crack a website. A novice may attempt to steal data from a 

website, whereas a pro may cause serious damage by either defacing the site, or 

using the Web server to spread a virus. Unlike most other attacks, the techniques 

used in Web attacks range from Layer 2 to Layer 7 attacks, thus making the Web 

server susceptible to a wider variety of possible hacking attempts. Since the 

firewall port must be opened for the Web service (by default, port 80), it cannot 

help in preventing Layer 7 attacks, which makes the detection of Web attacks 

difficult. Refer to Figure 2, which shows the typical components used to form Web 

portal infrastructure. 

 
Figure 2: Web portal infrastructure 

From the security perspective, each of these components does exhibit some 

vulnerability, which if exploited, can result in hacking of Web content. Let us now 

discuss some common yet dangerous attacks in detail. 



DoS and sniffing 

Since the website is hosted on an IP address open to the Internet, a denial of 

service attack can easily take the Web server down. Similarly, packet sniffing can 

easily be used to capture plain-text user IDs and passwords on the wire, if 

encryption or other security measures are not put in place during Web designing. 

Almost all Layer 2 and 3 attacks such as packet flooding, SYN flooding, etc, are 

possible on a website IP and the port on which it is hosted. 

HTTP DoS attack 

Unlike a network-layer-based denial of service attack, an HTTP DoS attack works 

at Layer 7. In this type of attack, the website is programmatically crawled to get a 

list of pages to be accessed, during which the attacker also makes note of the time 

required by the server to process each page. Those pages that require higher 

processing time are selected, and multiple HTTP requests are sent to the Web 

server, each requesting one of the selected pages. 

To cater to each request, the Web server starts consuming resources. Upon 

reaching its resource limits, it eventually gives up and stops responding. Attackers 

are known to use simple scripts to create a flood of HTTP GET requests to achieve 

this attack. If the website contains only simple static HTML pages, this attack does 

not work very well. However, if dynamic pages pull data from a backend database 

server, this attack can wreak considerable damage. 

While it may or may not result in data theft, it certainly shuts the website down, 

creating a bad user experience and damage to the reputation. Intelligent techniques 



must be deployed to detect and stop such attacks, which we will learn about 

shortly. 

Access control exploitation 

Usually, in the case of Web portals, a user is given an ID and a password to log in 

and perform certain functions. Portal administrators are also given their own 

credentials for maintenance and data management. If the Web services and 

applications are not designed to be secure from the coding perspective, crackers 

can exploit those to gain elevated privileges. 

For example, if a Web server is not patched with the latest security fixes, which 

may result in remote code execution, attackers can possibly write a script to exploit 

that vulnerability and gain access to the server and control it remotely. In some 

cases, this can happen because the best coding and security practices are not 

followed, leaving holes in the security configuration, and making the Web solution 

susceptible to attacks. 

Forms input invalidation 

Many websites use forms that are filled with information by website users and 

submitted to the server. The server then validates the input and saves it to the 

database. The validation process is sometimes delegated to the client browser, or to 

the database server. If these validations are either not strong enough, or not 

properly programmed, they can leave security holes that can be exploited by 

attackers. 

For example, if a field such as the PAN number is mandatory, and if the validation 

for duplicate entries is not done properly, the attacker can programmatically submit 



forms with dummy PAN numbers, thus flooding the database with bogus entries. 

This can eventually help the attacker in planting a denial of service (DoS) attack, 

by simply querying the page asking for entries that do not exist. 

Code exploitation 

While this is a bit similar to the previous vulnerability, there is some difference in 

the way crackers exploit it. Often, programmers make assumptions while setting 

limits for various user inputs. Typical examples are that the user name should 

never exceed 50 characters, or that numeric values will always be positive, etc. 

These assumptions are dangerous from the security standpoint, because crackers 

can exploit them. For example, by filling the name field with 100 characters, and 

thus putting a stress on the datasets, or by providing negative integers in the 

numeric fields to create incorrect calculation results. 

All the attacks mentioned above are used by novice attackers, and following good 

programming practices can help stop them. Let’s now take a look at technically 

advanced attacks, which are also common today. 

Cookie poisoning 

As explained earlier, cookies are small information snippets residing in the 

browser (on the client machine’s hard drive), and are used to store user session-

specific information. It’s the cookie that remembers our shopping cart contents, our 

preferences and the previous log-in information, in order to provide a rich Web 

experience. 



While it is not very easy to tamper with a cookie, an pro attacker can gain control 

of it and manipulate its content. Poisoning is achieved via a Trojan or a virus, 

which sits in the background and keeps forging cookies to gather a user’s personal 

information and send it to the attacker. 

Besides this, the virus can also alter the contents of cookies to cause serious 

problems, such as submitting shopping cart contents in such a way as to deliver the 

purchased items to a dummy address accessible to the hacker, or to let the browser 

connect to advertisement servers, which helps the attacker gain money, etc. If 

session information is stored in the cookie, pro attackers can gain access to it and 

steal the session, causing a man-in-the-middle attack. 

Session hijacking 

A Web server talks to multiple browsers at the same time, to take requests in and to 

deliver the requested content. While each connection is made, the Web server 

needs to have a way to maintain the uniqueness for each connection. It uses session 

tokens for this — dynamically generated text strings, which are factors of an IP 

address, the date, time, etc. 

Attackers can steal this token either by guessing programmatically or sniffing on 

the network, or by performing a client-side script attack on a victim computer. 

Once stolen, this token can be used to create a fake Web request and steal the 

victim user’s session and information. 

URL query-string tampering 

Websites that pull data from a database server and show it on the Web page are 

often found to use query-strings in the main URL. For example, if the website 



URL is http://www.a.com/, it may use http://www.a.com/showdata?field1=10&field2=15 to 

pass field1 and field2 as parameters, with their respective values, to the database — 

and the resultant output is provided to the browser in the form of a Web page. 

Having this query-string format exposed so easily, it is possible for users to edit 

and alter field values beyond the expected limits, or fill them with junk characters. 

It can further result in users gaining access to information they are not supposed to 

get. In the worst case, if the field values are userid and password, a brute-force 

dictionary attack can be used to gain system-level access, merely over HTTP. 

Cross-site scripting 

This is the most common vulnerability in Web technology, attracting XSS (cross-

site scripting) attacks on all major and famous websites. It has been found that a 

large number of websites are vulnerable to this attack, even today. This 

vulnerability is a result of improper programming practices and the unavailability 

of appropriate security measures in a Web infrastructure. 

As we know, a client browser maintains its own security in terms of not allowing 

website contents and the website cookies to be accessed by anyone, except by the 

users themselves. In this case, the vulnerabilities in a Web application let crackers 

inject client-side code into the page accessed by users. This code is typically 

written using JavaScript. 

To understand this, consider a page that takes the user name as input, and writes 

back on the screen “Welcome username”. Let us then suppose the input box is 

filled up with JavaScript instead, such as what follows: 

<script> alert ('You are in trouble') </script> 
Here, the Web page may end up executing the script tags, showing the dialogue 

box message “You are in trouble”. This can be further exploited by the attacker, by 

http://www.opensourceforu.com/2010/09/securing-apache-part-2-xss-injections/
http://www.opensourceforu.com/2010/09/securing-apache-part-2-xss-injections/


simply poisoning the cookie, stealing the session and injecting this code into the 

victim user’s browser. Upon doing so, the JavaScript code would run in the 

victim’s browser, and create damage to any extent possible. 

SQL injection 

As we saw earlier, Web portals use database servers in the backend, whereby the 

Web page connects to the database, queries for data, and presents the fetched data 

in a Web format to the browser. SQL injection attacks can occur if the input on the 

client side is not filtered appropriately before it is sent to the database in a query 

form. This can result in the possibility of manipulating SQL statements, in order to 

perform invalid operations on the database. 

A common example for this attack would be of an SQL server, which is accessed 

by a Web application, wherein the SQL statements are not filtered by middleware 

or validation code components. This can lead to the attacker being able to craft and 

execute his own SQL statements on the backend database server, which could be 

simple SELECT statements to fetch and steal data, or could be as serious as 

dropping an entire data table. In other cases, the data can be corrupted by 

populating record sets with malicious and fake content. 

Despite the increasing awareness about cyber security, SQL injection attacks are 

still possible on many websites. 

While it is impossible to cover all the possible attacks in this article, let us take a 

look at a couple of lesser-known attacks, which are increasingly being used to 

exploit websites. 

Slow HTTP attack 



While this one is similar to the denial of service attack, the technique is a bit 

different. It exploits the fact that each HTTP request must be listened to by the 

Web server. Every Web request starts with a field named content-length, which 

tells the server how many bytes to expect, and terminates with a carriage-return 

and line-feed (CRLF) character combination. 

The HTTP request is initiated by the attacker with a large value for content-length, 

and instead of sending the CRLF to conclude the request, it is simply delayed by 

sending very small amounts of data to the Web server. This makes the Web server 

wait for more data that is yet to come, to complete the request. This consumes Web 

server resources. 

If the request is delayed to a point that is just less than the session timeout setting 

on the server, multiple such slow requests can completely consume resources and 

create a denial of service attack. This can be achieved merely by creating slow and 

delayed requests from one single browser, which makes it dangerous from the 

security perspective. 

Cryptographic exploitation 

Secure websites use SSL certificate-based technology to encrypt data flowing over 

the network. This leads to an illusion that everything is safe, which is unfortunately 

not the case. Many shopping-cart applications forget to further encrypt the cookie 

contents, and leave those in plain text. Though the data over the wire is protected 

by SSL, running a client-side script to intercept the cookie and read its contents can 

potentially result in data or session theft. 

As for SSL, modern attackers use tools to detect and break into weaker cipher 

algorithms, thus rendering SSL protection useless, though this is not very common. 



Protecting FOSS systems 

Apache running on CentOS/Red Hat, Ubuntu and Debian has gained immense 

popularity among serious FOSS Web infrastructures and solutions. The very first 

step is to harden the Apache Web service itself; there are numerous guides and 

examples on the Internet regarding that — for each Linux distro, along with 

examples. 

Disabling ports other than the Web service port, and stopping and disabling 

unnecessary services is highly recommended. Deploying a well-configured firewall 

or intrusion-detection device is essential. As mentioned earlier, a simple firewall is 

not sufficient; hence, a content-filtering firewall equipped to detect Web layer 

attacks is required. 

Securing Web portals is not limited to the Web server, but also extends to 

components such as database servers, Web services, etc. From the network security 

stand-point, allowing IP connections to the database only from front-end Web 

servers is a good idea. Running rootkit detectors, anti-virus tools and log analysers 

must be a routine job, to prevent hacking attempts. 

For advanced security between the middleware and Web server, a stronger 

authentication mechanism should be in place too. Cookies should be encrypted and 

SSL deployed, with stronger cipher algorithms. 

From the coding perspective, as we learnt earlier, it is essential to use secure 

programming techniques, and also to follow the best security practices, such as 

code reviews and penetration testing. Additional processes such as input code 

validation, server and database-side validation, is recommended too. 



Web exploitation is a common way of attacking websites. Due to its easy 

availability and programmability, FOSS infrastructure is also susceptible to such 

attacks — and hence, network administrators must understand techniques to 

protect their infrastructure from information loss or theft. 

 

Parithy
Typewritten Text
Source : http://www.opensourceforu.com/2012/03/cyber-attacks-explained-web-exploitation/


	CYBER ATTACKS EXPLAINED: WEB EXPLOITATION
	Web hijacking
	DoS and sniffing
	HTTP DoS attack
	Access control exploitation
	Forms input invalidation
	Code exploitation
	Cookie poisoning
	Session hijacking
	URL query-string tampering
	Cross-site scripting
	SQL injection
	Slow HTTP attack
	Cryptographic exploitation

	Protecting FOSS systems




