
CYBER ATTACKS EXPLAINED: DNS 
INVASIONS 

 

 

We often read about defaced websites whose pages get changed to some malicious content. 
How do hackers do it and how do we protect our infrastructure from them? This article is 
about how hackers invade DNS (domain name systems). DNS invasion is technically 
advanced and a harmful attack on a network or Web infrastructure. Network administrators 
are urged to learn more about it and strive to secure the infrastructure they manage. 

As we all know, the DNS exists because it’s impossible for humans to remember IP 
addresses for sites, but easy to remember alphanumeric names. The DNS system was 
created when the Internet was a friendly place — leading to quite a few issues. 

Figure 1 shows how name resolution fundamentally works. When an application (like a 
browser) wants to connect to a destination service, it queries the DNS server, asking for the 
IP address. This query is sent over UDP port 53 as a single request and receives a single-
packet reply from the server. (Note that since UDP data space is limited to 512 bytes, the 
protocol stack automatically uses the TCP protocol for queries and replies.) When the client 
receives a reply, it updates its local cache with the received entry, speeding up subsequent 
queries to the same domain. Entries in local cache are automatically purged after their TTL 
(Time to Live) expires. 



 
Figure 1: Name resolution 

The DNS uses record types like A, CNAME, SOA, MX, etc. While explaining these is 
beyond the scope of this article, it is important for administrators to know the usage of each, 
and before implementing them, they should be evaluated from the security standpoint. 
Before we learn about DNS-based attacks, we need to know about two types of queries — 
iterative and recursive. 

§ An iterative DNS query: When a client queries a DNS server, asking if it has the answer 
for a given domain name, the DNS server may or may not have the answer ready. If the 
DNS server doesn’t have an answer, instead of shutting the request down, it sends the 
name of an upstream DNS server that might have the answer. This is usually called a 
DNS referral. The client sends the query to the next (referred) server; if that one too 
doesn’t have an answer, it sends a referral to yet another upstream server. This process 
continues till either the client gets an IP address or gets a “query failed” error message. 

§ The recursive DNS query: In this case, the query begins by a client host requesting a 
name resolution to its immediate DNS server. If the DNS server does not have the 
answer, it is supposed to do the job of talking to upstream servers, instead of merely 
providing their referral names. Again, if the upstream server does not have an answer, it 
needs to take on the responsibility further. This continues till either the root domain server 
is reached, which must have the answer, or if the queried name itself does not exist, in 
which case an error message percolates down the chain to the client. Unlike the iterative 
method, a recursive query proves to be more aggressive in getting query results. 

Iterative queries are usually made by DNS servers while recursive queries are made by 
clients, which helps to reduce the burden of referral searches. From the security 
perspective, it is important to know the basics of DNS, such as, there can be multiple DNS 
servers in an organisation replicating their zone records to each other in order to maintain 
name resolution consistency. 



DNS data can be updated dynamically without needing any service to be restarted, and 
when a change is made on the master server, it triggers replication to partner servers 
automatically. The actual time required for replication is defined by the TTL of each record. 
In case of geographically dispersed DNS servers, this time period can be as long as a day, 
since all servers in the chain maintain their own cache to speed up replication. 

DNS security attacks 
It has been observed that systems administrators spend a lot of time designing security 
around applications, servers and other infrastructure components, but unfortunately tend to 
forget hardening DNS servers. Please refer to Figure 2, which shows possible breach points 
where the DNS can be vulnerable to attacks. By design, the DNS heavily relies on UDP, 
does not contain security by itself, and does not have foolproof built-in authentication — 
which makes it more susceptible to hacking than other network-based services. Let’s look at 
a few very common DNS attacks. 

 
Figure 2: Possible attack points 

DNS cache poisoning 
This attack lets name resolution to be tweaked in two ways. In one method, the hacker 
installs a rootkit or a virus, which is intended to take control of the local DNS cache of the 
client. Once done, entries in the local DNS are altered to point to a different IP address. 

For example, if a browser tries to access http://www.cnn.com/, instead of getting the CNN 
IP address, it gets an IP set by the hackers’ script, which is usually in the hackers’ own Web 
farm, and hosts viruses or shows some derogatory information. 



In a different and more dangerous approach, the hacker attacks a DNS server and alters its 
local cache — so all servers using that DNS server for resolution end up at a wrong IP 
address, causing a system-wide failure, apart from information loss or theft. 

In rare cases, hackers can access a root DNS server, which holds the base entries that 
form the root domain, such as .com, .net or any country-specific name system. Hackers 
then modify entries on that server, which triggers automatic replication, and can cause 
serious global outages for multiple businesses and websites. Though such situations are 
rare, they have occurred — and that too, very recently, involving a famous social community 
chatting website. 
DNS hijacking 
This attack is also commonly used to bend the DNS system. Here, the client DNS cache on 
a client is not altered, but instead the client’s DNS settings are changed to point to the 
hackers’ own DNS server. Usually the purpose is not to steal data, but to gather statistical 
data from the client computer. All name resolution requests going to the hacker are resolved 
to the correct addresses, but the hacker learns of the typical sites visited by the client. 

This information can further be used by online advertisers to target that client with Web-
visit-specific advertisements. Some ill-behaved e-thieves also redirect users to their own 
websites, or search engines, either to gain money from advertisements, or simply to steal 
data and use it for social engineering. While it is inappropriate to use this feature for any 
personal gain, it is being used by many well-known websites and ISPs to collect user 
browsing statistics. 

DNS spoofing 
This refers to merely a man-in-the-middle type of attack in which the hacker gains access to 
the network the DNS server is on, and performs ARP cache poisoning and spoofing on that 
network. Once MAC-level control is achieved, the hacker then fetches the IP address of the 
DNS server, and starts sniffing and spoofing requests meant for the real DNS server. 

The hacker’s machine resolves all DNS queries, completely bypassing the real DNS server. 
This has serious consequences, because all machines on that network can be completely 
unaware of this, and end up sending DNS traffic to the hacker’s machine. 

There is an alternate method called DNS ID spoofing. Each DNS request and response 
carries a unique identifier, to differentiate between various simultaneously generated 
requests to a DNS server. This unique ID is usually a combination of the MAC address and 
the date/time stamp, and is created by the protocol stack automatically. 

A hacker uses a sniffer to look at one or more DNS requests and responds with their 
respective unique number, but with a false IP address. This results in the client’s local 
cache being updated to this fabricated address. Further damage can be caused by hosting 
a virus on the machine at that IP address. 

DNS rebinding 



Also called DNS pinning, this is an advanced type of attack. In this method, the hacker first 
registers his own domain name and sets the TTL value of that domain at a lower value, 
which prevents that domain name from being cached. 

DNS denial of service 
As we learnt in the very first article of this series, bombarding the UDF port 53 or TCP port 
53 with DNS queries can cause a DoS attack. Another method is to perform a ping of death 
or a TCP SYN flood attack. The idea behind this is to overwhelm server resources (CPU 
and memory) to stop it responding to queries. Though DNS servers are protected by 
firewalls, if care is not taken to block DNS UDP ports from non-trusted networks, it exposes 
the name resolution system to this attack. 
DNS amplification 
Amplification means to provide the DNS server with a task heavier than it is capable of 
handling. There are multiple ways to stress the server and eventually make it non-
functional. In one method of amplification, a Trojan is written to poison and populate the 
local cache of multiple client hosts. This forces all infected clients to send their name 
requests to a particular name server, which is being targeted by the hackers. 

Each server can only respond to a certain number of queries (based on CPU speed and 
configuration) and eventually starts queuing up requests. As more and more clients get 
infected, the increasing number of queries ultimately makes the server give up. 

In another type of attack, a hacker poisons the DNS server’s cache; instead of changing the 
associated IP address of an A or CNAME record, a change is made to the domain name. 
To make it worse, the domain name is made to contain a few hundreds or thousands of 
characters. This starts the replication process, and hence the download of multiple kilobytes 
of data from the main name server to its replicating partners, and eventually to clients. 

Upon expiration of the TTL, the replication process initiates again, and results in the 
breakdown of one or more DNS servers in the chain. This trick actually simulates a 
distributed denial of service attack, and hence is very dangerous and hard to control. 

Protecting FOSS systems 
In the FOSS world, the DNS service is a well-known implementation across the globe, 
simply because it proves to be the fastest available name resolution mechanism. A widely 
used and famous example is the Bind utility/service. However, since most DNS attacks 
exploit the basic design lacunae, it becomes a tougher task to protect FOSS-based name 
resolution systems. 

The very first step to protect a FOSS DNS server is to lock it down at the network level. 
Besides the server management ports, only the DNS query ports should be allowed and the 
rest must be blocked on the firewall as well as in OS-based port filtering. 

The second important step is to not install any other software on a DNS server, other than 
the name server service itself. This precaution must be followed especially in the case of an 

http://www.opensourceforu.com/2011/11/cyber-attacks-explained-dos-and-ddos/


externally facing corporate root name server that holds all internal name spaces, and 
resolves external name queries for the local area network. 

It is often found that vulnerability in another program on the name server leaves a back door 
open, resulting in intrusion into the name service. While most critical infrastructures 
implement a firewall, a UTM device and powerful anti-virus or anti-Trojan software, it 
becomes imperative to have an intrusion detection system (IDS) in place. An IDS is capable 
of filtering out sneaky Layer 2 and Layer 3 attacks such as ARP spoofing, IP spoofing, 
packet sniffing, etc. 

Besides the above crucial precautions, there are a few advanced methods that can be 
followed too. As we learnt earlier, each query carries its own unique identifier and is marked 
in the UDP packet. Unfortunately, due to the design of DNS stacks based on RFC 
standards, these identifiers are easily predictable, and hence randomising those can be a 
good idea to prevent spoofing attacks. Similarly, the UDP port on which the name server 
responds is predictable too, and can be randomised. 

There are open source tools available on the Internet for just this purpose; however, please 
note that it adds a bit of a delay in query resolution. A fairly recent and popular protection 
technique is DNSSEC (DNS Security Extensions). It protects clients and systems from 
cache poisoning attacks by digitally signing records using public key encryption. While 
working in a similar fashion to SSL, the querying and answering hosts need to establish a 
digital trust between each other; once it is achieved, name resolution takes place. 

Once the process is completed, the session is torn down, thus protecting the security at 
either ends. DNSSEC is being implemented by most ISPs in the world. 

DNS invasion is a common phenomenon in the IT security world. It involves exploiting DNS 
design loopholes to gain access to the IT infrastructure or to lure the client computers to a 
phishing farm. FOSS is also susceptible to such attacks and hence network administrators 
must understand the techniques to protect their infrastructure from information loss or theft. 

 

Parithy
Typewritten Text
Source : http://www.opensourceforu.com/2012/02/cyber-attacks-explained-dns-invasions/


	CYBER ATTACKS EXPLAINED: DNS INVASIONS
	DNS security attacks
	DNS cache poisoning
	DNS hijacking
	DNS spoofing
	DNS rebinding
	DNS denial of service
	DNS amplification

	Protecting FOSS systems




