
COPYING FILE CONTENTS USING STREAMS,

READERS & WRITERS

Here we will see copying file Contents using FileInputStream & FileOutputStream, BufferedInputStream &

BufferedOutputStream, FileReader & FileWriter and BufferedReader & BufferedWriter.

Copying file contents using FileInputStream and FileOutputStream

This program read a file using FileInputStream and prints it to another file using FileOutputStream. As we

have seen in introduction to streams, FileInputStream obtains input bytes from a file in a file

system. FileInputStream is a low level byte stream, whose constructor takes the name of the file as an

argument. FileOutputStream is also another low level byte stream, whose constructor takes the name of

the file as an argument. If you are not clear about streams, please do read ‘introduction-to-streams-in-

java’ first.

Code

import java.io.*;

public class FileCopier {

 public static void main(String[] args) throws IOException,

 InterruptedException {

 FileInputStream fin = new FileInputStream("myFile.txt");

 FileOutputStream fout = new FileOutputStream("myFileOut.txt", true);

 int b = fin.read();

 while (b != -1) {

 fout.write((char) b);

 b = fin.read();

 }

 fout.close();

 fin.close();

 }

http://javajee.com/introduction-to-streams-in-java
http://javajee.com/introduction-to-streams-in-java

}

Here we read contents of myFile.txt byte by byte, cast it into character and write it into another file. The

read method returns -1 when the end of file is reached.

Using BufferedInputStream and BufferedOutputStream with FileInputStream

and FileOutputStream

To improve the efficiency we can use Buffered classes in connection with other

streams. BufferedInputStream adds the ability to buffer the input and to support the mark and reset

methods. Similarly a BufferedOutputStream writes to the file using FileOutputStream only when the buffer

is full, not for every byte, and this reduces the actual file writes and hence improve efficiency.

Modified code using BufferedInputStream & BufferedOutputStream

import java.io.*;

public class FileCopierBuffered {

 public static void main(String[] args) throws IOException {

 FileInputStream fin = new FileInputStream("myFile.txt");

 BufferedInputStream bin = new BufferedInputStream(fin);

 System.out.println("Is markable? " + bin.markSupported());

 FileOutputStream fout = new FileOutputStream("myFileOut.txt", true);

 BufferedOutputStream bout = new BufferedOutputStream(fout);

 int b = bin.read();

 boolean markDone = false;

 boolean resetDone = false;

 while (b != -1) {

 char ch = (char) b;

 System.out.println(ch);

 if ((ch == 'c') && !markDone) {

 bin.mark(512);

 markDone = true;

 }

 if ((ch == 'd') && !resetDone) {

 bin.reset();

 resetDone = true;

 }

 bout.write(ch);

 b = bin.read();

 }

 bout.close();

 bin.close();

 }

}

If input file contains:

aaaa

bbbb

cccc

dddd

Output file will contain:

aaaa

bbbb

cccc

dccc

dddd

We marked after the first c and then reset after the first d. To avoid marking and resetting again and

again we have used two Boolean variables markDone and resetDone and will set them on first marking

and first resetting respectively.

Take time and understand the code and input/output and you will understand marking and resetting.

Copying file contents using FileReader and FileWriter

FileReader and FileWriter are convenience classes when working with character files. The first program

using FileInputStream and FileOutputStream can be changed to use FileReader and FileWriter, by simply

replacing FileInputStream with FileReader and FileOutputStream with FileWriter.

Code

import java.io.*;

public class FileCopier {

 public static void main(String[] args) throws IOException,

 InterruptedException {

 FileReader fr = new FileReader("myFile.txt");

 FileWriter fw = new FileWriter("myFileOut.txt", true);

 int b = fr.read();

 while (b != -1) {

 fw.write((char) b);

 b = fr.read();

 }

 fw.close();

 fr.close();

 }

}

I have also changed the variable names in addition to the replacements, but nothing else.

Using BufferedReader and BufferedWriter with FileReader and FileWriter

To improve the efficiency we can use Buffered classes in connection with other streams. BufferedReader

adds the ability to buffer the input and to support the mark and reset methods. Similarly a BufferedWriter

writes to the file using FileWriter only when the buffer is full, not for every byte, and this reduces the

actual file writes and hence improve efficiency. BufferedReader is similar to BufferedInputStream and

BufferedWriter is similar to BufferedInputStream in functionality, however BufferedReader and

BufferedWriter wrap Reader and Writer, whereas BufferedInputStream and BufferedOutputStream wrap

InputStream and OutputStream objects.

The second program using BufferedInputStream, BufferedOutputStream, FileInputStream and

FileOutputStream can be changed by just changing FileInputStream with FileReader, FileOutputStream

with FileWriter, BufferedInputStream with BufferedReader and BufferedOutputStream with

BufferedWriter.

Code

import java.io.*;

public class FileCopierBuffered {

 public static void main(String[] args) throws IOException {

 FileReader fr = new FileReader("myFile.txt");

 BufferedReader br = new BufferedReader(fr);

 System.out.println("Is markable? " + br.markSupported());

 FileWriter fw = new FileWriter("myFileOut.txt", true);

 BufferedWriter bw = new BufferedWriter(fw);

 int b = br.read();

 boolean markDone = false;

 boolean resetDone = false;

 while (b != -1) {

 char ch = (char) b;

 System.out.println(ch);

 if ((ch == 'c') && !markDone) {

 br.mark(512);

 markDone = true;

 }

 if ((ch == 'd') && !resetDone) {

 br.reset();

 resetDone = true;

 }

 bw.write(ch);

 b = br.read();

 }

 bw.close();

 br.close();

 }

}

I have also changed the variable names.

Source : http://javajee.com/copying-file-contents-using-streams-readers-writers

