
COMPONENT DIAGRAMS 
 

 

Figure 1: Component Diagram 

Component Diagrams 

· Component diagrams are used in modeling the physical aspects of object-oriented 

systems. 

· A component diagram shows the organization and dependencies among a set of 

components. 

· Component diagrams are used to model the static implementation view of a system. 

· Component diagrams are essentially class diagrams that focus on a system’s 

components. 

· Graphically, a Component diagram is a collection of vertices and arcs. 

· Component diagrams are used for visualizing, specifying, and documenting component-

based systems and also for constructing executable systems through forward and 

reverse engineering. 

http://praveenthomasln.files.wordpress.com/2012/04/figure-1-a-component-diagram.png


· Component diagrams commonly contain Components, Interfaces and Dependency, 

generalization, association, and realization relationships. It may also contain notes and 

constraints. 

Common Uses 

component diagrams are used in one of four ways 

· To model source code 

· To model executable releases 

· To model physical databases 

· To model adaptable systems 

Modeling Source Code 

To model a system’s source code, 

· Either by forward or reverse engineering, identify the set of source code files of interest 

and model them as components stereotyped as files. 

· For larger systems, use packages to show groups of source code files. 

· Consider exposing a tagged value indicating such information as the version number of 

the source code file, its author, and the date it was last changed. Use tools to manage 

the value of this tag. 

· Model the compilation dependencies among these files using dependencies. Again, use 

tools to help generate and manage these dependencies. 

Figure 2 shows five source code files. 



 

Figure 2: Modeling Source Code 

Modeling an Executable Release 

To model an executable release, 

· Identify the set of components you’d like to model. Typically, this will involve some or all 

the components that live on one node, or the distribution of these sets of components 

across all the nodes in the system. 

· Consider the stereotype of each component in this set. For most systems, you’ll find a 

small number of different kinds of components (such as executables, libraries, tables, 

files, and documents). You can use the UML’s extensibility mechanisms to provide 

visual cues(clues) for these stereotypes. 

· For each component in this set, consider its relationship to its neighbors. Most often, 

this will involve interfaces that are exported (realized) by certain components and then 

imported (used) by others. If you want to expose the seams in your system, model 

these interfaces explicitly. If you want your model at a higher level of abstraction, elide 

these relationships by showing only dependencies among the components. 

Figure 3 models part of the executable release for an autonomous robot. 

http://praveenthomasln.files.wordpress.com/2012/04/figure-2-modeling-source-code.png


 

Figure 3: Modeling an Executable Release 

Modeling a Physical Database 

To model a physical database, 

· Identify the classes in your model that represent your logical database schema. 

· Select a strategy for mapping these classes to tables. You will also want to consider the 

physical distribution of your databases. Your mapping strategy will be affected by the 

location in which you want your data to live on your deployed system. 

· To visualize, specify, construct, and document your mapping, create a component 

diagram that contains components stereotyped as tables. 

· Where possible, use tools to help you transform your logical design into a physical 

design. 

Figure 4 shows a set of database tables drawn from an information system for a school. 

http://praveenthomasln.files.wordpress.com/2012/04/figure-3-modeling-an-executable-release.png


 

Figure 4: Modeling a Physical Database 

Modeling Adaptable Systems 

To model an adaptable system, 

· Consider the physical distribution of the components that may migrate from node to 

node. You can specify the location of a component instance by marking it with a location 

tagged value, which you can then render in a component diagram (although, technically 

speaking, a diagram that contains only instances is an object diagram). 

· If you want to model the actions that cause a component to migrate, create a 

corresponding interaction diagram that contains component instances. You can 

illustrate a change of location by drawing the same instance more than once, but with 

different values for its location tagged value. 

Figure 5 models the replication of the database from figure 4. 

http://praveenthomasln.files.wordpress.com/2012/04/figure-4-modeling-a-physical-database.png
Parithy
Typewritten Text
Source : http://praveenthomasln.wordpress.com/2012/04/07/component-diagrams-s8-cs/



 

Figure 5: Modeling Adaptable Systems 

 

http://praveenthomasln.files.wordpress.com/2012/04/figure-5-modeling-adaptable-systems.png

	COMPONENT DIAGRAMS



