
COMPILING LINUX SOFTWARE FROM SOURCE 
CODE 

A computer program is a list of instructions given to a computer to make it perform a 
specific task or series of tasks. Computers do not understand English (we all wish that 
they did!), so programmers must communicate these instructions to the computer in a 
language the computer understands. Computers, however, can only operate on 
numbers, which makes a computer’s language very difficult for humans to understand. 

The solution to this problem is to create an intermediate language that both humans and 
computers can understand. These are called programming languages. Programmers 
create a list of instructions for the computer in a programming language such as C, 
Pascal, or Fortran. This list of instructions is known as source code. It is textual in 
nature, and readable to humans (who speak the language). Programmers do all their 
work in this source code, changing the instructions to fix bugs, add features, or alter the 
appearance of a program. 

When the programmer believes he has perfected the instructions for his program, he 
uses a special program called a compiler to translate his human readable text 
instructions into computer readable numbers that correspond to the same instructions. 
The resulting file is usable by computers but incomprehensible to humans. This is 
called object code. The resulting executable file is often called binary, after the number 
system used by the computer. This translation from source code into binary object code 
is a one-way process. It is impossible to translate a binary executable back into the 
original source code. 

The binary executable is what you need if you want to run and use a program. This is 
commonly what you will receive when you purchase shrink-wrapped software from a 
retail store. The source code is what you need if you want to understand how a program 
works internally, or if you want to change, add to, or improve a program. If you have the 
source code and an appropriate compiler, you can produce the binary executable, but 
the reverse is not true. 



If you’ve downloaded a source code archive, you’ll have to compile it before you can 
install it. In the top level directory of your extracted source, there is usually a README 
or INSTALL file that gives you instructions on how to compile and install the package. 
Some instructions are better than others, and rarely will they tell you everything you 
need to know. Hopefully this guide will help fill in some of the blanks. 

A Quick Example 

A typical incantation to install a source package looks something like this. 

[root]# tar -xzvf ${name}.tar.gz 

Unpacking ... 

[root]# cd ${name} 

[root]# more README 

[root]# more INSTALL 

[root]# ./configure 

[root]# make 

[root]# make install 

Unpacking the Archive 

[user]$ tar -xzvf ${filename}.tar.gz 

[user]$ tar -xjvf ${filename}.tar.bz2 

[user]$ tar -xvf ${filename}.tar 

[user]$ unzip ${filename}.zip 

[user]$ unzip ${filename}.exe 



Depending on the type of archive you have received, the command for unpacking it may 
differ slightly. Shown above are some popular examples. tar is a Unix utility (Tape 
ARchiver) for working with bundled file archives. Typical command switches are x to 
extract files, v for verbose mode so you can tell what’s going on, f indicating there will 
be a filename to follow. If the file name ends in .tar that is all you need, but usually the 
tar file has been compressed with another utility. Files ending in .gz were compressed 
with gzip. For those, add the z flag to the list of parameters. Files ending 
with .bz2 were compressed with the bzip2 utility. For those, add the j flag, or failing 
that, --bzip2. 

Occasionally you will run into an archive delivered in a .zip file. Use the unzip utility 

to unpack these. (Note that you may have to install the unzip package first.) 

Some files you download may be built into self-extracting zip archives that end 
in .exeextension. Usually unzip can unpack those files as well, but be warned that 

anything packaged this way is almost certainly meant for a Windows machine and not 
your Linux box. Programs packaged this way probably will not run on Linux. But you 
might have an archive that contains only fonts or documentation, and those should be 
okay. 

Configuring 

The typical steps to configure and install software are these. 

[root]# ./configure --help 

[root]# ./configure 

[root]# ./configure --prefix=/home/vince 

Why do you type “dot slash configure” instead of just “configure”? Because the 
configure script is in the current directory, represented by the dot. By default, Linux does 
not search the current directory for executables; you must explicitly tell it where to look. 
(This is a security feature.) If you don’t type the dot slash, you’ll get an error like 



<samp>bash: configure: command not found</samp>, and may spend hours pulling 
your hair out trying to figure out why. 

The primary job of the configure script is to detect information about your system and 
“configure” the source code to work with it. Usually it will do a fine job at this. The 
secondary job of the configure script is to allow you, the system administrator, to 
customize the software a bit. Running ./configure --help should give you a list of 

command line arguments you can pass to the configure script. Usually these extra 
arguments are for enabling or disabling optional features of the software, and it is often 
safe to ignore them and just type ./configure to take the default configuration. 

There is one common argument to configure that you should be aware of. The --
prefixargument defines where you want the software installed. In most source 
packages this will default to /usr/local/ and that is usually what you want. But 

sometimes you may not have root access to the system, and you would like to install 
the software into your home directory. You can do this with the last command in the 
example, ./configure --prefix=/home/${vince} (where ${vince} is your user 

name). 

Compiling, Installing and Uninstalling 

[root]# make 

[root]# make install 

[root]# make uninstall 

The next step is to invoke the GNU Make utility to read the Makefile and compile the 
program for you. Unlike the Linux shell, make does look in the current directory for its 

Makefile, so you needn’t specify anything else. You should be aware that compiling 
software can take a long time. Compiling a simple program may take only a minute or 
two, but if you are planning to compile all of KDE from source, you may have to wait 
hours or even days depending on the speed of your computer. Also, it is not at all 



unusual to see hundreds of compiler warnings scroll by while software is compiling. If 
you are lucky, the software will compile anyway. 

Assuming the compile phase completes without error, the next step is to actually install 
the software using make install. This invokes the make utility again, this time using 

it to copy the newly compiled files where they need to be in order to run your program. 
(See Where did the files go?) With some programs, you can remove the installed files 
using make uninstallas well, but this is not universal. 

Most errors you will bump into while compiling have to do with missing libraries that the 
software depends on. Every case is unique, but watch for “not found” or “unable to 
locate” phrases. Typically you just need to install the “development” versions of the 
libraries it needs. These are usually available from your operating system vendor 
packages. Search for packages with names ending in “-devel”. 

 

http://www.control-escape.com/linux/lx-swinstall-where.html
Parithy
Typewritten Text
Source : http://www.control-escape.com/linux/lx-swinstall-tar.html


	COMPILING LINUX SOFTWARE FROM SOURCE CODE
	A Quick Example
	Unpacking the Archive
	Configuring
	Compiling, Installing and Uninstalling




