Building And Integrating CppUnitLite
In Eclipse on Linux

If you are familiar with CppUnit, CppUnitLite is — as the website mentions — more
barebones, lighter, and more portable as it avoids using some C++ features such as
exceptions, and templates.

We will build it as a static library, so that we can then link into any of our projects that we
would like to write unit tests for later.

First, we need to get the source code form the CppUnitLite website. Go there and get it. Once
you do, extract the zip file. You’ll find that it contains a lot of files and a couple of folders.
We only need a sub-set of those, specifically the folders in the CppUnitLite sub-folder
highlighted in the below screen shot.

MName - |Size | Twpe
v CppUnitLite 13 items Folder
- Cpp 3 items Folder
ui CppUnitTesks 3 items Folder
I;I Failure.cpp 973 bytes C++ source code
|=| Failure.h 880 bytes C header
Iil SimpleString.cpp 1.7 kB C++ source code
|=| simplestring.h 1.1 kB C header
I;I Test.cpp 924 bytes C++ source code
|=| Testh 2.2 kB Cheader
I;I TestHarness.h 396 bytes C header
I;I TestRegistry.cpp 692 bytes C++ source code
I;I TestRegistry.h 6545 bytes C header
Iél TestResult.cpp 642 bytes C++ source code
I;I TestResult.h 587 bytes C header
I%I readme.txk 553 bytes plain text documenkt
I;—__I Stack.h 115 bytes C header
=.| stackMain.cpp 127 bytes C++ source code
I;—__I StackTest.cpp 306 bytes C++ source code

Now go ahead and open up Eclipse. Select File > New > C++ Project.

http://c2.com/cgi/wiki?CppUnitLite
http://webinstitute.files.wordpress.com/2013/02/selection_001.png

@& Makefile Project with Existing Code
B C++ Project

G C Project

B Project...

B Convert to a C/C++ Autotools Project

B Convert bo a C/C++ Project (Adds C/C++ Nature)
Source Folder

& Folder

B Source File

i Header File

K File from Template
€ Class
W Task

M Refresh
Convert Line Delimiters To

W Example..
Switch Workspace

Restart S Other..

1 Import...
1 Export..

From the C++ Project Window, name your project CppUnitL.ite, and make sure you selected

a Static Library project type. Now click on Next >.

- C++ Project + X
C++ Project p—
& Directory with specified name already exisks. [

I —
@m: lepUnitLite| _) l

|| Use defaulk location

Location: [/home}ahmedﬁutorials l I Browse... ‘
Choose file system: | default 2

Project type: Toelchains:

B = GMU Autotools Cross GCC

> & Executable _ LinuxGcc

[wf Show project types and toolchains only if they are supported on the platform

@ < Back |I Next > ‘ I Cancel ‘ uinish ‘

http://webinstitute.files.wordpress.com/2013/02/menu_002.png
http://webinstitute.files.wordpress.com/2013/02/c-project-_003.png

For the build configuration, you can just select Debug for now. Then click Finish.

b C++ Project + X
Select Configurations —
Select platforms and configurations you wish to deploy on {

Project type: Static Library
Toolchains: Linux GCC
Configurations:

e oo i
& Debug ___ | selectall |

%% Releas

I Deselect all J

Advanced settings...

Use "Advanced settings” button to edit project’s properties.

Additional configurations can be added after project creation.
Use "Manage configurations” buttons either on toolbar or on property pages.

@ < Back | Next > | [Cancel J _ Finish J

You are now ready to import the source files. Right-click the project and click Import

...from the menu.

File Ed& Source Refactor HNawigate Search Project Run
- Hr&r ~ R
L Project |- Mavigat 8 | = O

=

http://webinstitute.files.wordpress.com/2013/02/buildconf.png

From the Import window, select General > File System as the import source. Then
click Next >.

% Import + X
Select
|
Import resources from the local file system into an existing project. u

Select an import source:

[type Filter bext ,.f]

I' = General I
[T, Archive File
= Existing Projects into Workspace
| mFlesstem
El Preferences
¥ = CfC++
[€] ¢/Cc++ Executable
&% C/C++ Project Settings
Existing Code as Makefile Project
> = Cvs
P (= Git
P (= Install
P = PHP
B = Remote Systems

@ | < Back | MNexk = 1 Cancel l | Finish |

From the next window, click on the Browse button, and navigate to the folder where the
needed CppUnitL.ite sources (highlighted at the top of this post) are located. Now select only
the needed files. Make sure NOT to select the two sub-folders Cpp and CppUnitTests. When
you’re done, click Finish.

http://webinstitute.files.wordpress.com/2013/02/import-_win.png

-

Import + X
File system

Import resources from the local file system. B

-
From directory: [fh0mejahmedfTutorials/onﬂcnpunitLite | v | l Browse... l
= b e
Cpp W [Failure.h
> = & [simpleString.cpp

M [simpleString.h
W [Test.cpp
M [Testh

M [£] TestHarness.h
W [TestRegistry.cpp
M [£] TestRegistry.h
™ [£] TestResult.cpp
M [TestResult.h

| Filcer Types... | | seleccall || Deselectall |

Into folder: [CppunitLite] l Browse...

Options
["] Overwrite existing resources without warning

"] Create top-level folder

@ 1 < Back “ Next > | 1 Cancel l Finish

Now before we build, I hope you noticed on their website that they have this important note
about a bug in the CHECK_EQUAL macro, and the revised one has been provided. This

macro is located in the file Test.h. Copy the correct one from the website, and paste over the
wrong one in the file.

B4 Cpp Unit Lite

This is a simple C++ TestingFramework developed by Michael Feathers, who wrote the original CppUnit. Unlike some other frameworks. this one is a barebones framework inter

The motivations for the rewrite:

+ More easily write individual tests (one TEST macro which registers the test automatically; instead of methed source, header and registration in three different files)
« Follow the Javalinit model less strictly, avoiding use of LateCee PlusPlus features such as RTTI, exceptions, and templates, thus increasing portability.
o I'mlooking for the opposite myself; 1 want LateCeePlusPlus features, anything else feels like C...

Important. Error in macro CHECK_EQUAL. When condition is true test stops and no other code is executed.
[Revise as following:

#define CHECK_EQUAL (expected actual){ if {!({(expected) == {actual}}) {result_.addFailure(Failure(name_, _ FILE__, _LINE__, StringFrom{expected), StringFrom{actual))); return; }}

I notice that the download only has Visual Studio projects. How portable is this framework compared to CppUnit?

What Liranss is CnnlinitLita Tistribnted 1mder? The dowrnlnaded #in file has nn licenss informatiom

http://webinstitute.files.wordpress.com/2013/02/import-_files.png
http://webinstitute.files.wordpress.com/2013/02/check_equal-bug.png

IR Test.h B =0

#define TEST(testName, testGroup)y
class testGroupdtestMane#fTest @ public Test \
{ public: testCroup@#testhame®#Test () : Test (#testMame "Test") {1} \
vold run (TestResultd result_);)\
testGroup##testlameS#Instance; \
vold testGroupSftestNamessTest: run (TestResultd result)

- #define CHECK(condition))
{ Af (!(condition)) \
{ result_.addFailure {Failure {name_, _ FILE , LINE_ , #condition)); return;] }

{expected ,actual)

CHECK_EQUAL
ed

- #define LONGS_EQUAL(expected ,actual)y
{ long actualTemp = actual; Y
long expectedTemp = expected; \
if ((expectedTemp) != (actualTemp)) \

Now Build the project. This will create a sub-folder named Debug under your project. If you
take a look inside it, you’ll find a file named libCppUnitLite.a. This is the static library file
that you would want to link in your projects later.

File Edit Source Refactor Mavigate Search Project Run Window Help

ST T [S A R R AR T R S N
TR . Debuc for project Cppunictice |
B & -

#define TEST(testMame, testGroup))
class testGroupi#fitesthamed#Test : public Test \

F o=kl d s dessdh™ ms s sl e bl e T =i F % 2 Tamie Folbies sl #ra

¥ = CppUnitLite
¥ = Debug

http://webinstitute.files.wordpress.com/2013/02/check_equal-correction.png
http://webinstitute.files.wordpress.com/2013/02/build.png

[f5 Project | %= Navigat 2 | = O
B & “’

¥ .= CppUnitLite

¥ = Debug

|# Failure.d

Failure.o

libCppUnitLite.a

| & makefile

| & objects.mk

|# simpleString.d

SimpleString.o

| @ sources.mk

| & subdir.mk

|# Test.d

Test.o

|# TestRegistry.d

TestRegistry.o

|# TestResult.d

TestResult.o
|¥] .cproject

|| .project
Now we’re done with building the library, and we need to experiment with it to write some
simple unit tests. For demonstration purposes, we will create a new project, import the
library, and the header files of CppUnitLite there, and write some simple unit tests just to
show how things work. Create a new C++ project, and make sure the project type
isExecutable this time. Name the project whatever you want. | named it TestCppUnitL.ite.

Now click Finish.

http://webinstitute.files.wordpress.com/2013/02/library-file.png

b C++ Project
C++ Project

Creake C++ project of selected type

Project name: [TesthpUnitLite|

(M Use default location

Location: Uhome,fahmedfworkspaceﬁesthpUthite]l Browse... ‘

Choose file system: | default -

Project type: Toolchains:
P = GNU Autotools Cross GCC
| & Executable | > noxgec

| ® Hello world C++ Project |

P = Shared Library
B = Static Library
P = Makefile project

(v show project types and toolchains enly if they are supported on the platform

@ |

< Back

|

MNext >

J

Cancel

| [[_Finish__|

We will create a sub-folder under this project in which we will import the CppUnitLite
library and header files shortly. Right-click on the project name and select New > Source
Folder. Name the folder CppUnitLite.

New
GoInto
Open in New Window

& copy

Delete
Move..
Rename..
import..
Export.

A Refre

Close Project

Build Configurations
Make Targets
index

Validate

Show in Remote Systems view
Conw

Build Documentation

Run As

Debug As

rom Local History...

C/C++ Code Analysis

[
C
R
E
R
T

wove Rpmlint Warnings

Resource Configurations

as shown above, select General > File System

+ @B Makefile Project with Existing Code

& C++ Project
G C Project
i Project...

& Convert to a C/C++ Autotools Project
C/C++ Project (Adds C/C++ Nature)

E File from Template
& Class
W Task

i Example.

¢ il Other..

Now right-click on that newly created folder, and select Import. From the Import window,

as the import source and click Next >. Click

http://webinstitute.files.wordpress.com/2013/02/c-project-_test.png
http://webinstitute.files.wordpress.com/2013/02/source-folder-menu.png

the Browse button and navigate to the folder where we built the library. Once you do that
select only the library file (libCppUnitLite.a) from the list and click finish.

File system
Import resources from the local file system. ﬁ

/home/ahmed/Tutorials/CppUnitLite/Debug ||.m"|

& Debug

L1 @ makefile

[[objects.mk

[| simpleString.d
[[@ simpleString.o

[—— (E————— (S ————

Repeat exactly the same above mentioned process again to import the header files. Just
browse to where they are and import them into the same folder. You’ll need to import 6
header files namely Test.h, TestHarness.h, TestResult.h, TestRegistry.h, SimpleString.h,
and Failure.h. Then click Finish.

http://webinstitute.files.wordpress.com/2013/02/import-library.png

File system
Import resources from the local file system.

. N N m
/home/ahmed/Tutorials/CppUnitLite I“-"“|

£ CppUnitLite [l [%] .cproject

[] [%] .project

[| || Failure.cpr

M [c] Failure.h

[] [simpleString.cpp
M [simpleString.h
[[€ Test.cpp

M [Testh

M [c] TestHarness.h
[[¢] TestRegistry.cpp
M [c] TestRegistry.h
[[£] TestResult.cpp
“ B TestResulth

. . . . m
TestCppUnitLite/CppUnitLite |

Now it’s time to write some simple code. Right-click on the project name, and click New >

Source File. Name the file main.cpp and click Finish.

http://webinstitute.files.wordpress.com/2013/02/import-headers.png

- New Source File + X

Source File

Create a new source file. L

Source folder: [TesthpUnitLite l Browse...

Source file: [main.cpp| l

Template: | Default C++ source template = | Configure... |
@ | Cancel | Finish

All you need to write is the following code. It’s kind of like a boiler-plate code to start

running the tests and reporting the results.

#include "CppUnitLite/TestHarness.h™

int main()

{

TestResult tr;
TestRegistry::runAllTests(tr);

return O;

}

At this moment there isn’t any tests to run, so we need to write some very simple tests just to
show how things work. We will create a new source file and we will name it tests.cpp. In
this newly created file we will write some tests, some of them are intended to fail just to

show how CppUnitLite reports a test failure. Notice that CppUnitLite used predefined

http://webinstitute.files.wordpress.com/2013/02/main-cpp.png

macros to enable us to write these simple unit tests easily. Copy and paste the following code

into tests.cpp.

#include "CppUnitLite/TestHarness.h"
TEST(EqualitySuccess, EqualityGroup)

{

inta=>5;
CHECK(a == 5);

}

TEST(EqualityFailure, EqualityGroup)

{

inta=6;
CHECK(a == 5);

}

TEST(GreaterSuccess, GreaterGroup)

{

inta =50;
CHECK(a > 30);

}

TEST(GreaterFailure, GreaterGroup)
int a = 50;
CHECK(a > 100);

}

For any test you write, First you’ll need to include the TestHarness.h header file, which
includes all of the others for you. Next you’ll need to use the TEST macro. the TEST macro
takes two arguments, the first is the test name, the second is the test group. This is useful
when you want to create multiple tests that belong to a single group. As you can see above |
have to test groups, each of which has two tests, one that is intended to succeed, and the
other is intended to fail.

I’m using the CHECK macro for all of my tests above, but you have others too that you can
use such as CHECK_EQUAL, LONGS_EQUAL, .. etc. They’re defined in the header

file Test.h.

Now we need to build and run those tests to see the result. But WAIT!! If you try to build
now, you’ll fail as the linker doesn’t know how to link to the library file. You must specify
that yourself.

Right-click the project name and select Properties. From the Properties window, go to
C/C++ Build > Settings. From the Tool Settings tab, under GCC C++ Linker > Libraries,

you’ll need to do two things.

[eype filter text d]
Pk Resource

Builders
|* cices Build

Build Variables

Discovery Options
Environment

¥ & GCC C++ Compiler
@Pmp;mr
(# Includes
(# optimization
» CfC++ General (% Debugging
Project Facets
Project References.
Run/Debug Settings

* Task Repository

You’ll need to add the library search path. Click on the Add... button next to Library
Search Path (-L) and click on the Workspace button, and select the folder where we

imported the library file. click Ok, and then Ok again.

http://webinstitute.files.wordpress.com/2013/02/linker.png

€ tests.cpp &

* Resource
Builders

¥ CfC++ Build

Build Variables

Discovery Options

Environment

Logging

(B Miscellaneous
v) GCC C++ Linker

Next you’ll need to specify the name of the library. From the same window click on
theAdd... button next to Libraries (-1) and type CppUnitLib. Remember our library file is
namelibCppUnitLite.a, but GCC C++ Linker doesn’t need the lib or .a parts of the name.
So if you named your library libMonkey.a, just type Monkey when you add the library :).

Click Ok and then Ok again to exit the project Properties window.

http://webinstitute.files.wordpress.com/2013/02/linker-search-path.png

|
|
|
|
|
{
f
|
[

[type filter text 4 Settings S .

* Resource
ik Configuration: | Debug [Active] % | | Manage Configurations..
¥ C/C++ Build
Build Variables
Discovery Options
Environmenk ¥ B GCC Ce+ Compiler Libraries (1)
Loq!lir‘lﬂ) =} Preprocessor '
| settings | (E Includes
Tool Chain Editor (= Optimization
® /C++ General =2 Debuqu_inn !
Project Facets Enter Value + x
Project Referenc_es Libraries (1)
Run/Debug Settings v 5§ c.c{
Server] [Cnpunﬂ.i:el :]]
| ® Task Repository @j
Task Tags =20
» Validation @J
WikiText e
e
(& Miscellaneous
¥ B GCC C#++ Linker
(2 General
() Miscellaneous
(2 Shared Library Settings
¥ W GCC Assembler
General
|Restore Defaults| | Apply
(?) | cancel | ok |

Now everything is ready to build and run. Build the project and run it as a C++ Application,

and see the output on the console window. You’ll see that it reports the two intentional

failures, what conditions that failed, in which files they are, and in which lines as well.

i Problems ¥ Tasks| B Console 2 |= Properties i Call Graph @ Git Repositories % Gits
<terminated> TestCppUnitLite Debu C++ Application] /home/ahmed/workspace/TestCppUnitLite/Debug

|Failure: "a > 100" line 31 in ../tests.cpp
Failure: "a == 5" line 19 in ../tests.cpp
There were 2 failures

Source : http://webinstitute.wordpress.com/2013/02/15/
building-and-integrating-cppunitlite-in-eclipse-on-
linux/

http://webinstitute.files.wordpress.com/2013/02/linker-library.png
http://webinstitute.files.wordpress.com/2013/02/console.png
Parithy
Typewritten Text
Source : http://webinstitute.wordpress.com/2013/02/15/building-and-integrating-cppunitlite-in-eclipse-on-linux/

	Building And Integrating CppUnitLite in Eclipse on Linux

