BFS and DFS

Lecture Overview: Search 2 of 3

- Breadth-First Search
- Shortest Paths
- Depth-First Search
- Edge Classification

Readings

CLRS 22.2-22.3

Recall:

graph search: explore a graph
e.g., find a path from start vertices to a desired vertex

adjacency lists: array Adj of $|V|$ linked lists

- for each vertex $u \in V$, Adj[u] stores u's neighbors, i.e. $\{v \in V \mid (u, v) \in E\}$
 - v - just outgoing edges if directed

Figure 1: Adjacency Lists
BFS and DFS

Figure 2: Breadth-First Search

Breadth-first Search (BFS):

See Figure 2.

Explore graph level by level from S

- level $\phi = \{s\}$

- level i = vertices reachable by path of i edges but not fewer

- build level $i > 0$ from level $i - 1$ by trying all outgoing edges, but ignoring vertices from previous levels

BFS (V,Adj,s):

```
level = {s: φ}
parent = {s: None}
i = 1
frontier = [s]  // previous level, $i - 1$
while frontier:
    next = []  // next level, $i$
    for u in frontier:
        for v in Adj[u]:
            if v not in level:  // not yet seen
                level[v] = i  // = level[u] + 1
                parent[v] = u
                next.append(v)
    frontier = next
i += 1
```
Example:

Figure 3: Breadth-First Search Frontier

Analysis:

- vertex \(V \) enters next (\\& then frontier) only once (because level[\(v \)] then set)
 base case: \(v = s \)

- \(\implies \) Adj[\(v \)] looped through only once

\[
\text{time} = \sum_{v \in V} |\text{Adj}[V]| = \begin{cases} |E| & \text{for directed graphs} \\ 2 \times |E| & \text{for undirected graphs} \end{cases}
\]

- \(O(E) \) time
 - \(O(V + E) \) to also list vertices unreachable from \(v \) (those still not assigned level)
 “LINEAR TIME”

Shortest Paths:

- for every vertex \(v \), fewest edges to get from \(s \) to \(v \) is

\[
\begin{cases}
\text{level}[v] & \text{if } v \text{ assigned level} \\
\infty & \text{else (no path)}
\end{cases}
\]

- parent pointers form shortest-path tree = union of such a shortest path for each \(v \)
 \(\implies \) to find shortest path, take \(v \), parent[\(v \)], parent[parent[\(v \)]], etc., until \(s \) (or None)
Depth-First Search (DFS):

This is like exploring a maze.

- follow path until you get stuck
- backtrack along breadcrumbs until reach unexplored neighbor
- recursively explore

```
parent = {s: None}

DFS-visit (V, Adj, s):
    for v in Adj[s]:
        if v not in parent:
            parent[v] = s
            DFS-visit (V, Adj, v)

DFS (V, Adj)
    parent = {}
    for s in V:
        if s not in parent:
            parent[s] = None
            DFS-visit (V, Adj, s)
```

Figure 4: Depth-First Search Frontier

Figure 5: Depth-First Search Algorithm
Example:

![Graph Diagram]

Figure 6: Depth-First Traversal

Edge Classification:

- **tree edges (formed by parent)**
- **nontree edges**
- **back edge: to ancestor**
- **forward edge: to descendant**
- **cross edge (to another subtree)**

Figure 7: Edge Classification

To compute this classification, keep global time counter and store time interval during which each vertex is on recursion stack.

Analysis:

- DFS-visit gets called with a vertex s only once (because then parent[s] set)
 \[
 \implies \text{time in DFS-visit} = \sum_{s \in V} |\text{Adj}[s]| = O(E)
 \]

- DFS outer loop adds just $O(V)$
 \[
 \implies O(V + E) \text{ time (linear time)}
 \]