

An Implementation Of Botnet Detection Algorithm For Grid Networks

International Journal Communication & Network Security (IJCNS), Volume-I, Issue-II, 2011
68

An Implementation Of Botnet Detection Algorithm For Grid Networks

G.Pradeep Reddy, A.Ananda Rao
JNTUA COLLEGE OF ENGINEERING

ANANTAPUR, ANDHRA PRADESH,INDIA
E-mail : pradeepreddy006@gmail.com, akepogu @gmail.com

Abstract—Grid is an emerging technology that aims at utilizing
resources efficiently and effectively, A botnet is a collection of
infected computers and the common attacks are A Distributed denial
of service attack (DDOS) is any type of attack on a networking
structure to disable a server from servicing its clients. Attacks range
from sending millions of requests to a server in an attempt to slow it
down, flooding a server with large packets of invalid data, to sending
requests with an Invalid or spoofed ip address.

 A botnet is taking action on the client itself via IRC
Channels without the hackers having to login to the clients
computer. In this paper we show the implementation and analysis of
three main types of attack: Ping of Death, TCP SYN Flood, and
Distributed DOS. The Ping of Death attack will be simulated against
a Microsoft Windows xp, computer. The TCP SYN Flood attack will
be simulated against a Microsoft Windows 2007 IIS FTP Server.
Distributed DOS will be demonstrated by simulating a distribution
zombie program that will carry the Ping of Death attack.

 This paper focuses on improving the efficiency of the
system performance over the network by implementing algorithm, It
demonstrate the potential damage from DOS attacks and analyze the
ramifications of the damage.

Keywords-Network Security, DDoS Attacks, Collaborative Change-
Point Detection, Internet Infrastructure, Collaboration Grids,
Community Networks, Peer-to-Peer Systems, and Internet
Service Provider, Denial of Service Attack (DOS), TCP SYN Flood.

I. INTRODUCTION

Community networks and Grid systems can be large
or small, ranging from local-area to wide-area
networks. They form the backbone infrastructure for
building multi-site computing clusters, collaboration
Grids, P2P systems, web services, enterprise Grids, or
any ISP-based core networks
for community services. Community networks and
collaboration Grids are often formed under a federation
of IT administrators. Cooperative computing and high
degree of resource sharing are expected in such
networked systems.

Denial of services attacks (DOS) is a constant danger to
web
sites. DOS has received increased attention as it can
lead to a severe lost of revenue if a site is taken offline
for a substantial amount of time. There are many types

of denial of service attacks but two of the most
common are Ping of Death and TCP SYN Flood. We
have chosen to implement these two techniques and add
Distributed DOS (DDOS) as well.

In a Ping of Death attack, a host sends hundreds of ping
requests (ICMP Echo Requests) with a large or illegal
packet size to another host in attempt to knock it offline
or to keep it so busy responding with ICMP Echo
replies that it cannot service its clients.

A TCP SYN Flood attack takes advantage of the
standard
TCP three-way handshake by sending a request for
connection with an invalid return address.

In this paper we demonstrate DDOS by creating a
worm like
program that installs programs on remote machines to
attack a particular server. These attackers listen in the
background for a message from a master program that
will tell these attackers to launch a DOS attack against a
machine. DDOS attacks are difficult to stop because
they can be coming from anywhere in the world. We
will implement a DDOS attack by launching the Ping of
Death implementation against a victim computer from
several other workstations.

We propose a collaborative change-detection scheme to
solve this problem. Using the NS-2 simulator, we
carried out intensive experiments to verify the
effectiveness of our new DDoS defense system. Under
different type of flooding attacks with variant flooding
rate, our scheme is capable of detecting the start of
DDoS attack quickly with high accuracy. Another
impressive advantage is the small false positive alarm
rate experienced. Treating Internet traffic as stochastic
process, sequential change-point detection technique
was developed to detect the start of flooding DDoS
attacks The typical change point detection
methodologies are hindered by lack of accurate
statistical model to describe the pre-change and post-
change traffic distributions.

An Implementation Of Botnet Detection Algorithm For Grid Networks

International Journal Communication & Network Security (IJCNS), Volume-I, Issue-II, 2011
69

This paper is organized as follows. Section -2

provides provides information about TCP SYN FOOD
IMPLEMENTATION and Section -3 provides
FLOODING PATTERENS OF DDOS ATTACKS,
Section-4 provides algorithmic approach that we can
avoid the botnet from the multiple vendors so we
propose an Attack Pattern Recognition algorithm which
reduces the threats and it increases the efficiency of the
vendor specific internet traffic. Finally section-5
provides MULTI-DOMAIN DDOS ATTACK
DETECTION.

II. TCP SYN FOOD IMPLEMENTATION

When hosts need to establish communications via the
TCP transport protocol, they must do a session
initiation, which consists of a three-way handshake:

1. The source host initiated the communication by
sending a TCP packet to the destination host the SYN
flag (SYNchronize sequence numbers) set to 1. In this
packet reside the source IP address and port number as
well as the destination IP address and port numbers (in
addition to several other fields which are
inconsequential for this discussion).

2. The destination host responds by sending a TCP
packet to the source host with the flags SYN and ACK
(ACKnowledge) set to 1. The response is sent to the
source IP address and port of the initial packet in step 1.

3. The source host sends the destination host another
TCP packet with the ACK flag set to 1. This completes
the 3-way handshake and normal data communication
can start.

In a TCP SYN Flood attack, the source (attacker) host
simply fails to complete step 3 leaving the destination
(victim) host with an unfinished communication
session. When the victim’s TCP socket receives the
message in step one, it allocates buffers, increments
counters, initiates timers, and increases communication
stacks in preparation for the communication that is to
follow. In addition, processor time is spent building the
reply packet (step 2) and sending it back.The attacker
can overwhelm the victim’s computer resources by
sending a “flood” of packets with the SYN flag set to 1
(step 1) and never bothering returning any response
(step 3).The TCP SYN Flood attack
Implemented is the Neptune algorithm and
implementation. In this algorithm, not only is step 3 of
the TCP handshake ignored, the source address in the
SYN packet of step 1 is set to an unreachable

destination (for example a non-routable IP address). IP
spoofing is used in this implementation therefore; it is
virtually impossible to track the origin of the packet
since the return address is fake. The victim’s computer
now expends time to try to deliver a packet to an
inexistent destination. IP spoofing is used in this
implementation therefore; it is virtually impossible to
track the origin of the packet since the return address is
fake. The victim’s computer now expends time to try
to deliver a packet to an inexistent destination. The
Neptune implementation also allows the attacker to
specify a specific service to deny. In a classical TCP
SYN Flood attack, the attacker generally tries to
prevent the victim’s computer from servicing any
legitimate requests. The Neptune implementation
however, allows the attacker to choose a specific TCP
service port to overwhelm. In other words, the attacker
can choose to bring down only a web server for
example (port 80). A simulation for an attack on a FTP
server running Windows 2000 IIS FTP has been tested.
small TCP SYN Flood attack against an FTP server (IP
address 148.166.161.115). In this particular attack, only
three SYN flood packets were sent (Nos. 1, 3, 5)
against an FTP server (port 21 destination). For each of
the packets, the server replies with and ACK-SYN
packet which in turn ends up nowhere (Nos. 2, 4, 6).
The server then retries to send replies a further two
times before giving up (Nos. 7-12). When looking
closer at the actual packets we can see the spoofed
packet clearly with the SYN flag set to 1 and the
spoofed source IP address of 10.10.1.1. Similarly, the
return packet is destined for nowhere and has the ACK
and SYN flags set to 1. The application also takes care
of using different source port numbers and sequence
numbers. This prevents the victim’s computer from
assuming that packets all come from the same client in
the same host. By changing the return port and
sequence numbers, a single computer can force another
host to allocate several connection resources.

B1. Neptune Algorithm (Extracted from source code)

* IP address information */

struct sockaddr_in sin;
register int i=0,j=0;
int floodcontrol=0;
unsigned short sport=161+getpid();
* Build TCP header */
packet.tcp.source=sport; /* 16-bit Source port number
*/
packet.tcp.dest=htons(dport); /* 16-bit Destination
port */
packet.tcp.seq=49358353+getpid(); /* 32-bit Sequence
Number */

An Implementation Of Botnet Detection Algorithm For Grid Networks

International Journal Communication & Network Security (IJCNS), Volume-I, Issue-II, 2011
70

agents

Command
Control traffic

Attack
traffic

 Victim

Handler

Attacker

Stepping
stone

packet.tcp.ack_seq=0; /* 32-bit Acknowledgement
Number */
 packet.tcp.doff=5; /* Data offset */
 packet.tcp.res1=0; /* reserved */
 packet.tcp.urg=0; /* Urgent offset valid flag */
 packet.tcp.ack=0; /* ACK flag */
 packet.tcp.psh=0; /* Push flag */
 packet.tcp.rst=0; /* Reset flag */
 packet.tcp.syn=1; /* SYN flag */ packet.tcp.fin=0;
/* Finish sending flag */
 packet.tcp.window=htons(242); /* 16-bit Window
size */
 packet.tcp.check=0; /* 16-bit checksum (to be filled
in below) */
 packet.tcp.urg_ptr=0; /* 16-bit urgent offset */
 /* Build IP header */
 packet.ip.version=4; /* 4-bit Version */
 packet.ip.ihl=5; /* 4-bit Header Length */
 packet.ip.tos=0; /* 8-bit Type of service */
 packet.ip.tot_len=htons(40); /* 16-bit Total length */
 packet.ip.id=getpid(); /* 16-bit ID field */
 packet.ip.frag_off=0; /* 13-bit Fragment offset */
 packet.ip.ttl=255; /* 8-bit Time To Live */
 packet.ip.protocol=IPPROTO_TCP; /* 8-bit
Protocol */
 packet.ip.check=0; /* 16-bit Header checksum (filled
in below) */
 packet.ip.saddr=sadd; /* 32-bit Source Address */
 packet.ip.daddr=dadd; /* 32-bit Destination Address

*/

III. FLOODING PATTERN OF DDOS
ATTACKS

A DDoS attack deploys multiple attacking entities to
deny legitimate application from obtaining a service.
The DDoS attacks overwhelm the target host and
associated network links with extraordinary huge
amount of packets that the victims are incapable to
handle. Legitimate traffic is simply blocked. Such brute
force attacks do not rely on particular network protocols
or system weakness.
As shown in Fig. 1, the attacker simply exploits the
huge resource asymmetry between the Internet and the
victim. The magnitude of the increased traffic is large
enough to crash the victim machine by resource
exhaustion, or jam its Internet connection by bandwidth
exhaustion, or both Therefore, DDoS attacks can
effectively take the victim off the Internet. To avoid
being caught by trace back techniques, attackers launch
attacks using spoofed IP addresses form innocent
victims.
 To overwhelm the victim, DDoS flows converge
toward the victim host. Therefore, we can observe
abnormal traffic volume changes on routers along the

paths of aggregation. The spatio-temporal traffic pattern
tends to form a tree rooted the last- hop router to the
edge network where the victim resides. By recognizing
such tree-like attack patterns at each end router, we can
detect the DDoS attacks.

 At the early stage of DDoS attack, the
abnormal changes are not obvious at each router due to
the huge data rate in the core network. Meanwhile,
routers cannot afford to monitor traffic on flow or
packet level. We define a traffic flow by a set of
packets satisfying a 5-tuple qualifier: {source IP
address, destination IP address, source port, destination

port,

protocol
applied}
during a
given
observation window.
Thus, such a flow is observable by
the router.

FIG 1. Traffic pattern of a typical DDoS attack.

 III.ATTACK PATTERN RECOGNITION
ALGORITHM

Algorithm 1: Attack Pattern Recognition

An Implementation Of Botnet Detection Algorithm For Grid Networks

International Journal Communication & Network Security (IJCNS), Volume-I, Issue-II, 2011
71

Input: x(t,i): Incoming packet in time slot t at
port i
 y(t,i): Outgoing packet in time slot t at port
i
ݐҧሺݔ െ 1, ݅ሻ Average of packet arrivals up to
time t‐1 at port i)
ݐതሺݕ െ 1, ݅ሻ: Average of outgoing packets up
to time t‐1 at port i
Output: Alert packets sent to central CAT server.
Procedure:
01: Update historical average of I/O packets in a
flow
02: Calculate DFAin and DFAout using Eqs. (1)
and (3)
03: If DFAin > threshold Then
04: Calculate DR and OR using Eqs. (5) and (6)
05: If DR ≈ 1 Then
06: If OR ≈ 1 Then
07: Suspicious pattern detected, alert packet sent;
08: Else if OR > 1 Then
09: Suspicious pattern detected, alert packet sent;
10: End If
11: Else if DR < 1 AND OR ≈ 1 Then
12: Suspicious pattern detected, alert packet sent;
13: End If
14: End If

a. DR ≈ 1 and OR ≈ 1: The flow cuts through the
router.
The router essentially forwards all increased
traffic.

b. DR < 1 and OR ≈ 1: The outgoing flow merges
multiple incoming flows, but not all incoming
flows
contain abnormally increased packets. As all of
them
are forwarded out through port iout, this is a
partial
aggregation pattern .

c. DR ≈ 1 and OR > 1: The outgoing flow merges
multiple incoming flows, each incoming flow
contains abnormal increases with same deviation
rate and they aim at the same destination. The
router is a merge point on the attacking path and it
is a full aggregation pattern .

d. DR < 1 and OR < 1: The changes are scattered,
so it is not part of a DDoS attack.

IV. MULTI-DOMAIN DDOS ATTACK DETECTION

We need to extend the scale of Server-based DDoS
detection to multiple network domains. Inter-domain
communication is thus needed in the alert aggregation
process. The Attack Pattern recognization algorithm is
to perform wide-area network anomaly detection. We
must reach agreement to resolve conflicts between
security policies applied in different domains. The
routers at various domains exchange alert packets
under agreed terms. The idea of cross-domain DDoS
defense is illustrated in Fig.2.
Multiple servers at different AS domains must be
protected by dedicated VPN channels among them. The
alert packets generated by ISP routers from different
domains may follow different policies and data formats.
Multiple CAT servers must work together to resolve the
conflicts. We will reveal the performance attributes
tied to policy fusion methodology applied. It was
suggested to approach the policy conflict problem
through trust negation[5].

Figure 2- Multiple servers in several ISP domains communicating
with each other to resolve the conflicts in security policies

V. CONCLUSIONS AND FURTHER WORK

The complexity of DDoS attack patterns grows fast, as
new network vulnerability is identified and more
sophisticated attack tools are available. There is no
magic that can handle all types of DDoS attacks. The
shared sources in collaboration Grids and community
networks are especially prone to such attacks. One
solution works well in a given

ISP

 ISP

ISP ISP

ROUTER

VPN

CERTIFICATE
AUTHORITY

An Implementation Of Botnet Detection Algorithm For Grid Networks

International Journal Communication & Network Security (IJCNS), Volume-I, Issue-II, 2011
72

network environment but may fail in other networks.

 All the implementations done in these
simulations consist of very simple and light loaded
attacks, which can cause severe amounts of damage.
DOS attacks can be stealthy covert and easily delivered.
The Neptune implementation for example, is only
10Kbytes in size and can cause devastation to a service.
When combined with the power of a DDOS attack,
Denial of Service is a truly powerful attack. Although
our implementations are not sophisticated, they serve as
examples of what such programs can do and the
damage they can cause.

VI. References

1]. Anderson, T., R. Mahajan, N. Spring, and D. Wetherall,

“Rocketfuel: An ISP Topology Mapping Engine,”
 http://www.cs.washington.edu/research/

networking/rocketfuel/, Feb. 2006
 [2] Blazek, R., H. Kim, B. Rozovskii, and A. Tartakovsky, “A

Novel Approach to Detection of Denial-of-Service Attacks via
Adaptive Sequential and Batch-sequential Change-Point
Detection Methods,” Proc. of the 2001 IEEE Workshop on
Information Assurance and Security, June 2001.

[3] Berman, F., G. Fox, and A. Hey (editors), Grid Computing,
John Wiley, England, 2003.

[4] Monk, T. and K. Claffy, “Cooperation in Internet Data
Acquisition and Analysis,” Coordination and Administration
of the Internet Workshop, Cambridge, MA., Sept. 8-10, 1996.
(CAIDA Project, http://www.caida.org/)

[5] Cai, M., K. Hwang and Y. Chen, “Hybrid Intrusion and
Anomaly Detection with Weighted Signature Generation”,
IEEE Trans. On Dependable and Secure Computing, revised
Sept. 2005.

[6] Frank Kargl, Joern Maier, Michael Weber, “Protectingweb
servers from distributed denial of service attacks,”
Proceedings of the tenth international conference on World
Wide Web, April 2001, pp. 514.

[7] Errin Fulp et. al. “Preventing Denial of Service Attacks on
Quality of Service,” DARPA Information Survivability
Conference and Exposition (DISCEX II'01)Volume II-
Volume 2 , June 2001, pp. 1155.

[8] Gresty, Q. Shi, M. Merabti, “Requirements for a General
Framework for Response to Distributed Denial-of- Service,”
17th Annual Computer Security Applications Conference
(ACSAC'01), December 2001, pp. 422.

