ADVANCED CLASSES 11

Abstract, Root, Leaf and Polymorphic Elements

Abstract classes are those that do not have any direct instances and is specified in UML

by writing its name in italics. A leaf class is a class that have no children and is specified

in UML by writing the property leaf below the class’s name. A root class is a class that

has no parents and is specified in UML by writing the property root below the class’s

name.

An operation is polymorphic if it is specified with the same signature at different places

in the hierarchy of classes. Which operation to invoke is done polymorphically, that is a

match is determined at run time according to the type of the object. These are indicated

in Figure:4

——

..-'-""'_'_'_'_

abstracl class
/
{

_—— [con |
{rool} & = base class
origin : Painl
display) ® ™ abstract operation

getlDy) : Integer {leafle,_

— CONCrale GFIIEI'ETI'EI-I'I
/3 t\ /, abstract class

ectangularicon | Arbitrarylcon

I height : Integer
| width : Integer SR

adge ; LineCollection

| isinside(p : Point) : Bouleanq\
| polymaorphic oparation
Buttone—1— > concrete class
display()

1

OKButton®|
{leal} & T~ |eaf class

display()

T

Figure:4 class Diagram indicating root,leaf,polymorphism and abstract

For example, display and isInside are both polymorphic operations. Furthermore, the

operation Icon::display() is abstract, meaning that it is incomplete and requires a child to

http://praveenthomasln.files.wordpress.com/2012/02/uml-abstractrootleaf-and-polymorphism.png

supply an implementation of the operation. In the UML, you specify an abstract
operation by writing its name in italics, just as you do for a class. By contrast,
Icon::getlD() is a leaf operation as indicated by the property leaf. This means that the
operation is not polymorphic and may not be overridden.

Multiplicity

The number of instances a class may have is called its multiplicity. Multiplicity applies to
attributes, as well. A class having single instance is called as a singleton class. It is
indicated in Figure:5

, multiplicity
singleton class

s,

NEtWDFkCGHIFEI__I;ET‘1 Control REC? 3

consolePort [2..*] : Port 3

Figure:5 Multiplicity

Attributes

A class’s structural features are indicated by its attributes.

The syntax of an attribute in UML is

[visibility] name [multiplicity] [: type] [= initial-value] [{property-string}]

Some legal attribute declarations are given in Table:3.

»Oorigin |Name only

. riai Visibility and name

. igin : MName and type

8! | = *1f Name and complex type

. .. : I Name, multiplicity, and type
sorigin : , Mame, type, and initial value
.] -] frozel Mame and property

Table:3 Attributes

Three defined properties that can be used with attribute values are given in Table:4.

http://praveenthomasln.files.wordpress.com/2012/02/uml-multiplicity.png
http://praveenthomasln.files.wordpress.com/2012/02/uml-attributes.png

1. There are no restrictions on modifying the attribute's value.

2. For attributes with a multiplicity greater than one, additional values may be
added, but once created, a value may not be removed or altered,
3 The attribute's value may not be changed after the object is initialized.

Table:4 Attribute properties

Where default property is ‘changeable’.

Operations

A class’s behavioral features are indicated by its operations.

The UML distinguishes between operation and method. An operation specifies a
service that can be requested from any object of the class to affect behavior; a method
is an implementation of an operation.

The syntax of an operation in the UML is

[visibility] name [(parameter-list)][: return-type] [{property-string}]

All legal operation declarations are indicated in Table:5

o ol Mame only

. ' Ly isibility and name

.] , : Mame and parameters
. ' : I Mame and return type
.]] Mame and property

Table:5 Legal Operations

In an operation‘s signature, you may provide zero or more parameters, each of which
follows thesyntax.

[direction] name : type [= default-value]

Direction of a parameter may be any of the following values given in Table:6.

An input parameter; may not be modified

. An output parameter; may be modified to communicate information to the caller

. - AN input parameter; may be modified

Table:6 Direction Parameter
In addition to the leaf property described earlier, there are four defined properties that
can be used with operations. They are given in Table:7.

http://praveenthomasln.files.wordpress.com/2012/02/uml-attribute_properties.png
http://praveenthomasln.files.wordpress.com/2012/02/uml-legal-operations.png
http://praveenthomasln.files.wordpress.com/2012/02/uml-direction-parameter.png

1. - Execution of the operation leaves the state of the system unchanged. In other
words, the operation is a pure function that has no side effects.

2. Callers must coordinate outside the object so that only one flow is in the object
at a time. In the presence of multiple flows of control, the semantics and
integrity of the object cannot be guaranteed,

3. The semantics and integrity of the object is guaranteed in the presence of
multiple flows of control by sequentializing all calls to all of the object's guarded
operations. In effect, exactly one operation at a time can be invoked on the
object, reducing this to sequential semantics.

4, The semantics and integrity of the object is guaranteed in the presence of
multiple flows of control by treating the operation as atomic. Multiple calls from
concurrent flows of control may occur simultanecusly to one object on any

concurrent operation, and all may proceed concurrently with correct semantics:
concurrent operations must be designed so that they perform correctly in the

case of a concurrent sequential or guarded operation on the same object.

Table: 7 Operation_property

Template Classes

A template is a parameterized element. A template includes slots for classes,objects,
and values, and these slots serve as the template’s parameters. Every templates should
be instantiated first. Instantiation involves binding these formal template parameters to
actual ones. For a template class, the result is a concrete class that can be used just
like any ordinary class.

The instantiation of a template class can be modelled in two ways.

First done implicitly, by declaring a class whose name provides the binding. Second,
explicitly by using a dependency stereotyped as bind, which specifies that the source
instantiates the target template using the actual parameters. A template class is

indicated in Figure: 6.

template paramelers

N P———
lemplate class —*® [tem I
\o . Value :
—ewep | .Buckets:int |

+ hind{in i : Item; in ¥ : Value) ; Boolean
+ isBound(in i : llem) : Boolean {isQuery}

oo,

»,

implicit binding \1_‘ «bind» (Customer, Order, 3)
b explicit binding

Y

Map=Customer, Order, 3> !
LS

OrderMap

Figure:6 Template class

http://praveenthomasln.files.wordpress.com/2012/02/uml-operation-property1.png
http://praveenthomasln.files.wordpress.com/2012/02/uml-template-class.png

UML defines four standard stereotypes that apply to classes. They are indicated in
Table:8.

Specifies a classifier whose objects are all classes
2. - Specifies a classifier whose objects are the children of a given parent
3. Specifies that the classifier is a sterectype that may be applied to other
te - elements
4. uti1lity Specifies a class whose attributes and operations are all class scoped

Table:8 Standard Prototypes

Source : http://praveenthomasln.wordpress.com/2012/02/25/advanced-

classes-under-construction/

http://praveenthomasln.files.wordpress.com/2012/02/uml-standard-prototypes.png

	ADVANCED CLASSES II
	Source : http://praveenthomasln.wordpress.com/2012/02/25/advanced-classes-under-construction/

